Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS Biol ; 18(11): e3000680, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33253166

RESUMEN

Proopiomelanocortin (POMC) neurons are major regulators of energy balance and glucose homeostasis. In addition to being regulated by hormones and nutrients, POMC neurons are controlled by glutamatergic input originating from multiple brain regions. However, the factors involved in the formation of glutamatergic inputs and how they contribute to bodily functions remain largely unknown. Here, we show that during the development of glutamatergic inputs, POMC neurons exhibit enriched expression of the Efnb1 (EphrinB1) and Efnb2 (EphrinB2) genes, which are known to control excitatory synapse formation. In vivo loss of Efnb1 in POMC-expressing progenitors decreases the amount of glutamatergic inputs, associated with a reduced number of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptor subunits and excitability of these cells. We found that mice lacking Efnb1 in POMC-expressing progenitors display impaired glucose tolerance due to blunted vagus nerve activity and decreased insulin secretion. However, despite reduced excitatory inputs, mice lacking Efnb2 in POMC-expressing progenitors showed no deregulation of insulin secretion and only mild alterations in feeding behavior and gluconeogenesis. Collectively, our data demonstrate the role of ephrins in controlling excitatory input amount into POMC-expressing progenitors and show an isotype-specific role of ephrins on the regulation of glucose homeostasis and feeding.


Asunto(s)
Efrina-B1/metabolismo , Glucosa/metabolismo , Proopiomelanocortina/metabolismo , Animales , Encéfalo/metabolismo , Metabolismo Energético/fisiología , Efrina-B1/fisiología , Efrina-B2/metabolismo , Efrina-B2/fisiología , Fármacos actuantes sobre Aminoácidos Excitadores/metabolismo , Homeostasis/fisiología , Masculino , Ratones , Ratones Noqueados , N-Metilaspartato/metabolismo , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/metabolismo
2.
Front Endocrinol (Lausanne) ; 13: 1073759, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36686420

RESUMEN

Introduction: During hypothalamic development, the germinative neuroepithelium gives birth to diverse neural cells that regulate numerous physiological functions in adulthood. Methods: Here, we studied the ontogeny of ependymal cells in the mouse mediobasal hypothalamus using the BrdU approach and publicly available single-cell RNAseq datasets. Results: We observed that while typical ependymal cells are mainly produced at E13, tanycyte birth depends on time and subtypes and lasts up to P8. Typical ependymocytes and ß tanycytes are the first to arise at the top and bottom of the dorsoventral axis around E13, whereas α tanycytes emerge later in development, generating an outside-in dorsoventral gradient along the third ventricle. Additionally, α tanycyte generation displayed a rostral-to-caudal pattern. Finally, tanycytes mature progressively until they reach transcriptional maturity between P4 and P14. Discussion: Altogether, this data shows that ependyma generation differs in time and distribution, highlighting the heterogeneity of the third ventricle.


Asunto(s)
Células Ependimogliales , Tercer Ventrículo , Ratones , Animales , Neuroglía , Neuronas , Neurogénesis
3.
Front Neurosci ; 15: 748186, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34916896

RESUMEN

The bed nucleus of the stria terminalis (BNST) is a telencephalic structure well-connected to hypothalamic regions known to control goal-oriented behaviors such as feeding. In particular, we showed that the dorsomedial division of the anterior BNST innervate neurons of the paraventricular (PVH), dorsomedial (DMH), and arcuate (ARH) hypothalamic nuclei as well as the lateral hypothalamic area (LHA). While the anatomy of these projections has been characterized in mice, their ontogeny has not been studied. In this study, we used the DiI-based tract tracing approach to study the development of BNST projections innervating several hypothalamic areas including the PVH, DMH, ARH, and LHA. These results indicate that projections from the dorsomedial division of the anterior BNST to hypothalamic nuclei are immature at birth and substantially reach the PVH, DMH, and the LHA at P10. In the ARH, only sparse fibers are observed at P10, but their density increased markedly between P12 and P14. Collectively, these findings provide new insight into the ontogeny of hypothalamic circuits, and highlight the importance of considering the developmental context as a direct modulator in their proper formation.

4.
Oncotarget ; 7(47): 77071-77086, 2016 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-27776343

RESUMEN

Bone metastases are one of the main complications of prostate cancer and they are incurable. We investigated whether and how estrogen receptor-related receptor alpha (ERRα) is involved in bone tumor progression associated with advanced prostate cancer. By meta-analysis, we first found that ERRα expression is correlated with castration-resistant prostate cancer (CRPC), the hallmark of progressive disease. We then analyzed tumor cell progression and the associated signaling pathways in gain-of-function/loss-of-function CRPC models in vivo and in vitro. Increased levels of ERRα in tumor cells led to rapid tumor progression, with both bone destruction and formation, and direct impacts on osteoclasts and osteoblasts. VEGF-A, WNT5A and TGFß1 were upregulated by ERRα in tumor cells and all of these factors also significantly and positively correlated withERRα expression in CRPC patient specimens. Finally, high levels of ERRα in tumor cells stimulated the pro-metastatic factor periostin expression in the stroma, suggesting that ERRα regulates the tumor stromal cell microenvironment to enhance tumor progression. Taken together, our data demonstrate that ERRα is a regulator of CRPC cell progression in bone. Therefore, inhibiting ERRα may constitute a new therapeutic strategy for prostate cancer skeletal-related events.


Asunto(s)
Neoplasias Óseas/metabolismo , Neoplasias Óseas/secundario , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Receptores de Estrógenos/metabolismo , Animales , Neoplasias Óseas/genética , Moléculas de Adhesión Celular/metabolismo , Línea Celular Tumoral , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones , Trasplante de Neoplasias , Neoplasias de la Próstata Resistentes a la Castración/genética , Receptores de Estrógenos/genética , Transducción de Señal , Factor de Crecimiento Transformador beta1/metabolismo , Microambiente Tumoral , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteína Wnt-5a/metabolismo , Receptor Relacionado con Estrógeno ERRalfa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA