Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nat Methods ; 17(1): 73-78, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31740816

RESUMEN

The European XFEL (EuXFEL) is a 3.4-km long X-ray source, which produces femtosecond, ultrabrilliant and spatially coherent X-ray pulses at megahertz (MHz) repetition rates. This X-ray source has been designed to enable the observation of ultrafast processes with near-atomic spatial resolution. Time-resolved crystallographic investigations on biological macromolecules belong to an important class of experiments that explore fundamental and functional structural displacements in these molecules. Due to the unusual MHz X-ray pulse structure at the EuXFEL, these experiments are challenging. Here, we demonstrate how a biological reaction can be followed on ultrafast timescales at the EuXFEL. We investigate the picosecond time range in the photocycle of photoactive yellow protein (PYP) with MHz X-ray pulse rates. We show that difference electron density maps of excellent quality can be obtained. The results connect the previously explored femtosecond PYP dynamics to timescales accessible at synchrotrons. This opens the door to a wide range of time-resolved studies at the EuXFEL.


Asunto(s)
Proteínas Bacterianas/química , Cristalografía por Rayos X/instrumentación , Cristalografía por Rayos X/métodos , Fotorreceptores Microbianos/química , Conformación Proteica , Luz , Modelos Moleculares , Factores de Tiempo
2.
Physiol Rep ; 11(16): e15794, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37604647

RESUMEN

The respiratory muscle pressure generation and inspiratory and expiratory neuromuscular recruitment patterns in younger and older men were compared during exercise, alongside descriptors of dyspnea. Healthy younger (n = 8, 28 ± 5 years) and older (n = 8, 68 ± 4 years) men completed a maximal incremental cycling test. Esophageal, gastric (Pga ) and transdiaphragmatic pressures, and electromyography (EMG) of the crural diaphragm were measured using a micro-transducer and EMG catheter. EMG of the parasternal intercostals, sternocleidomastoids, and rectus abdominis were measured using skin surface electrodes. After the exercise test, participants completed a questionnaire to evaluate descriptors of dyspnea. Pga at end-expiration, Pga expiratory tidal swings, and the gastric pressure-time product (PTPga ) at absolute and relative minute ventilation were higher (p < 0.05) for older compared to younger men. There were no differences in EMG responses between older and younger men. Younger men were more likely to report shallow breathing (p = 0.005) than older men. Our findings showed younger and older men had similar respiratory neuromuscular activation patterns and reported different dyspnea descriptors, and that older men had greater expiratory muscle pressure generation during exercise. Greater expiratory muscle pressures in older men may be due to compensatory mechanisms designed to offset increasing airway resistance due to aging. These results may have implications for exercise-induced expiratory muscle fatigue in older men.


Asunto(s)
Disnea , Frecuencia Respiratoria , Masculino , Humanos , Anciano , Respiración , Electromiografía , Ejercicio Físico
3.
IUCrJ ; 8(Pt 6): 905-920, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34804544

RESUMEN

Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) enables essentially radiation-damage-free macromolecular structure determination using microcrystals that are too small for synchrotron studies. However, SFX experiments often require large amounts of sample in order to collect highly redundant data where some of the many stochastic errors can be averaged out to determine accurate structure-factor amplitudes. In this work, the capability of the Swiss X-ray free-electron laser (SwissFEL) was used to generate large-bandwidth X-ray pulses [Δλ/λ = 2.2% full width at half-maximum (FWHM)], which were applied in SFX with the aim of improving the partiality of Bragg spots and thus decreasing sample consumption while maintaining the data quality. Sensitive data-quality indicators such as anomalous signal from native thaumatin micro-crystals and de novo phasing results were used to quantify the benefits of using pink X-ray pulses to obtain accurate structure-factor amplitudes. Compared with data measured using the same setup but using X-ray pulses with typical quasi-monochromatic XFEL bandwidth (Δλ/λ = 0.17% FWHM), up to fourfold reduction in the number of indexed diffraction patterns required to obtain similar data quality was achieved. This novel approach, pink-beam SFX, facilitates the yet underutilized de novo structure determination of challenging proteins at XFELs, thereby opening the door to more scientific breakthroughs.

4.
Science ; 372(6542): 642-646, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33811162

RESUMEN

The coronavirus disease (COVID-19) caused by SARS-CoV-2 is creating tremendous human suffering. To date, no effective drug is available to directly treat the disease. In a search for a drug against COVID-19, we have performed a high-throughput x-ray crystallographic screen of two repurposing drug libraries against the SARS-CoV-2 main protease (Mpro), which is essential for viral replication. In contrast to commonly applied x-ray fragment screening experiments with molecules of low complexity, our screen tested already-approved drugs and drugs in clinical trials. From the three-dimensional protein structures, we identified 37 compounds that bind to Mpro In subsequent cell-based viral reduction assays, one peptidomimetic and six nonpeptidic compounds showed antiviral activity at nontoxic concentrations. We identified two allosteric binding sites representing attractive targets for drug development against SARS-CoV-2.


Asunto(s)
Sitio Alostérico , Antivirales/química , Dominio Catalítico , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/química , Desarrollo de Medicamentos , Inhibidores de Proteasas/química , SARS-CoV-2/enzimología , Animales , Antivirales/farmacología , Chlorocebus aethiops , Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos , Inhibidores de Proteasas/farmacología , SARS-CoV-2/efectos de los fármacos , Células Vero , Replicación Viral/efectos de los fármacos
5.
Nat Commun ; 11(1): 996, 2020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-32081905

RESUMEN

Serial X-ray crystallography at free-electron lasers allows to solve biomolecular structures from sub-micron-sized crystals. However, beam time at these facilities is scarce, and involved sample delivery techniques are required. On the other hand, rotation electron diffraction (MicroED) has shown great potential as an alternative means for protein nano-crystallography. Here, we present a method for serial electron diffraction of protein nanocrystals combining the benefits of both approaches. In a scanning transmission electron microscope, crystals randomly dispersed on a sample grid are automatically mapped, and a diffraction pattern at fixed orientation is recorded from each at a high acquisition rate. Dose fractionation ensures minimal radiation damage effects. We demonstrate the method by solving the structure of granulovirus occlusion bodies and lysozyme to resolutions of 1.55 Å and 1.80 Å, respectively. Our method promises to provide rapid structure determination for many classes of materials with minimal sample consumption, using readily available instrumentation.


Asunto(s)
Cristalografía/métodos , Proteínas/química , Microscopía Electrónica de Transmisión de Rastreo , Modelos Moleculares , Muramidasa/química , Muramidasa/ultraestructura , Nanopartículas/química , Nanopartículas/ultraestructura , Proteínas de la Matriz de Cuerpos de Oclusión/química , Proteínas de la Matriz de Cuerpos de Oclusión/ultraestructura , Tamaño de la Partícula , Conformación Proteica , Proteínas/ultraestructura
6.
Acta Crystallogr A Found Adv ; 76(Pt 2): 121-131, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32124850

RESUMEN

A crystallographic indexing algorithm, pinkIndexer, is presented for the analysis of snapshot diffraction patterns. It can be used in a variety of contexts including measurements made with a monochromatic radiation source, a polychromatic source or with radiation of very short wavelength. As such, the algorithm is particularly suited to automated data processing for two emerging measurement techniques for macromolecular structure determination: serial pink-beam X-ray crystallography and serial electron crystallography, which until now lacked reliable programs for analyzing many individual diffraction patterns from crystals of uncorrelated orientation. The algorithm requires approximate knowledge of the unit-cell parameters of the crystal, but not the wavelengths associated with each Bragg spot. The use of pinkIndexer is demonstrated by obtaining 1005 lattices from a published pink-beam serial crystallography data set that had previously yielded 140 indexed lattices. Additionally, in tests on experimental serial crystallography diffraction data recorded with quasi-monochromatic X-rays and with electrons the algorithm indexed more patterns than other programs tested.

7.
Nat Commun ; 11(1): 4511, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32908128

RESUMEN

Serial femtosecond crystallography (SFX) with X-ray free electron lasers (XFELs) allows structure determination of membrane proteins and time-resolved crystallography. Common liquid sample delivery continuously jets the protein crystal suspension into the path of the XFEL, wasting a vast amount of sample due to the pulsed nature of all current XFEL sources. The European XFEL (EuXFEL) delivers femtosecond (fs) X-ray pulses in trains spaced 100 ms apart whereas pulses within trains are currently separated by 889 ns. Therefore, continuous sample delivery via fast jets wastes >99% of sample. Here, we introduce a microfluidic device delivering crystal laden droplets segmented with an immiscible oil reducing sample waste and demonstrate droplet injection at the EuXFEL compatible with high pressure liquid delivery of an SFX experiment. While achieving ~60% reduction in sample waste, we determine the structure of the enzyme 3-deoxy-D-manno-octulosonate-8-phosphate synthase from microcrystals delivered in droplets revealing distinct structural features not previously reported.


Asunto(s)
Cristalografía/instrumentación , Electrones , Dispositivos Laboratorio en un Chip , Rayos Láser , Aldehído-Liasas/ultraestructura , Proteínas de Escherichia coli/ultraestructura , Hidrodinámica
9.
Acta Crystallogr A Found Adv ; 75(Pt 5): 694-704, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31475914

RESUMEN

Serial crystallography records still diffraction patterns from single, randomly oriented crystals, then merges data from hundreds or thousands of them to form a complete data set. To process the data, the diffraction patterns must first be indexed, equivalent to determining the orientation of each crystal. A novel automatic indexing algorithm is presented, which in tests usually gives significantly higher indexing rates than alternative programs currently available for this task. The algorithm does not require prior knowledge of the lattice parameters but can make use of that information if provided, and also allows indexing of diffraction patterns generated by several crystals in the beam. Cases with a small number of Bragg spots per pattern appear to particularly benefit from the new approach. The algorithm has been implemented and optimized for fast execution, making it suitable for real-time feedback during serial crystallography experiments. It is implemented in an open-source C++ library and distributed under the LGPLv3 licence. An interface to it has been added to the CrystFEL software suite.

10.
Struct Dyn ; 6(6): 064702, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31832488

RESUMEN

The new European X-ray Free-Electron Laser (European XFEL) is the first X-ray free-electron laser capable of delivering intense X-ray pulses with a megahertz interpulse spacing in a wavelength range suitable for atomic resolution structure determination. An outstanding but crucial question is whether the use of a pulse repetition rate nearly four orders of magnitude higher than previously possible results in unwanted structural changes due to either radiation damage or systematic effects on data quality. Here, separate structures from the first and subsequent pulses in the European XFEL pulse train were determined, showing that there is essentially no difference between structures determined from different pulses under currently available operating conditions at the European XFEL.

11.
Nat Commun ; 10(1): 5021, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31685819

RESUMEN

The world's first superconducting megahertz repetition rate hard X-ray free-electron laser (XFEL), the European XFEL, began operation in 2017, featuring a unique pulse train structure with 886 ns between pulses. With its rapid pulse rate, the European XFEL may alleviate some of the increasing demand for XFEL beamtime, particularly for membrane protein serial femtosecond crystallography (SFX), leveraging orders-of-magnitude faster data collection. Here, we report the first membrane protein megahertz SFX experiment, where we determined a 2.9 Å-resolution SFX structure of the large membrane protein complex, Photosystem I, a > 1 MDa complex containing 36 protein subunits and 381 cofactors. We address challenges to megahertz SFX for membrane protein complexes, including growth of large quantities of crystals and the large molecular and unit cell size that influence data collection and analysis. The results imply that megahertz crystallography could have an important impact on structure determination of large protein complexes with XFELs.


Asunto(s)
Electrones , Rayos Láser , Proteínas de la Membrana/química , Cristalografía , Cianobacterias/metabolismo , Modelos Moleculares , Complejo de Proteína del Fotosistema I/química , Complejo de Proteína del Fotosistema I/aislamiento & purificación , Electricidad Estática , Sincrotrones , Thermosynechococcus , Rayos X
12.
Nat Commun ; 9(1): 4025, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30279492

RESUMEN

The new European X-ray Free-Electron Laser is the first X-ray free-electron laser capable of delivering X-ray pulses with a megahertz inter-pulse spacing, more than four orders of magnitude higher than previously possible. However, to date, it has been unclear whether it would indeed be possible to measure high-quality diffraction data at megahertz pulse repetition rates. Here, we show that high-quality structures can indeed be obtained using currently available operating conditions at the European XFEL. We present two complete data sets, one from the well-known model system lysozyme and the other from a so far unknown complex of a ß-lactamase from K. pneumoniae involved in antibiotic resistance. This result opens up megahertz serial femtosecond crystallography (SFX) as a tool for reliable structure determination, substrate screening and the efficient measurement of the evolution and dynamics of molecular structures using megahertz repetition rate pulses available at this new class of X-ray laser source.

13.
IUCrJ ; 5(Pt 5): 574-584, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-30224961

RESUMEN

Liquid microjets are a common means of delivering protein crystals to the focus of X-ray free-electron lasers (FELs) for serial femtosecond crystallography measurements. The high X-ray intensity in the focus initiates an explosion of the microjet and sample. With the advent of X-ray FELs with megahertz rates, the typical velocities of these jets must be increased significantly in order to replenish the damaged material in time for the subsequent measurement with the next X-ray pulse. This work reports the results of a megahertz serial diffraction experiment at the FLASH FEL facility using 4.3 nm radiation. The operation of gas-dynamic nozzles that produce liquid microjets with velocities greater than 80 m s-1 was demonstrated. Furthermore, this article provides optical images of X-ray-induced explosions together with Bragg diffraction from protein microcrystals exposed to trains of X-ray pulses repeating at rates of up to 4.5 MHz. The results indicate the feasibility for megahertz serial crystallography measurements with hard X-rays and give guidance for the design of such experiments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA