Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Physiol Mol Biol Plants ; 28(8): 1561-1569, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36389091

RESUMEN

Pericarp browning (PB) is a serious problem in harvested litchi and drastically affects consumer acceptability and marketability. Postharvest PB and subsequent decay in fruit are linked to reactive oxygen species (ROS) accumulation in tissues. Antioxidants neutralize or scavenge ROS and maintain the shelf-life of fruit, especially in non-climacteric ones such as litchi. This work was aimed to assess the effect of vacuum infiltrated methyl jasmonate (MeJA; 1 and 2 mM) on the quality of harvested litchi fruit (cv. Purbi) during ambient storage (28 °C, RH 70-75%). The exogenous MeJA infiltration (2 mM) significantly retained quality attributes of litchi fruit as evident by lowered PB, weight loss, disease occurrence, quinone, and ROS (H2O2 and O2 -) accumulation. Moreover, MeJA infiltrated fruit suppressed the activity of polyphenol oxidase and peroxidase resulting in higher anthocyanin, phenolics, antioxidant potential, phenylalanine ammonia lyase activity as well as membrane integrity throughout the storage. Control fruit showed an early quality deterioration marked by prominent PB and other biochemical degradative changes. Thus, exogenous MeJA infiltration (2 mM) could be suggested to increase the shelf life of litchi by four days under ambient conditions.

2.
Bioengineering (Basel) ; 10(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36671579

RESUMEN

Northern corn leaf blight (NCLB) of maize, caused by Exserohilum turcicum (Pass.) Leonard and Suggs., is an important foliar disease common across maize-producing areas of the world, including Bihar, India. In this study, virulence and distribution of races were observed against Ht-resistant genes and also identified the E. turcicum race population distribution in Bihar. For that, 45 E. turcicum isolates were collected from maize fields in Bhagalpur, Begusarai, Khagaria, Katihar and Samastipur districts between 2020 and 2022. These isolates were screened on maize differential lines containing Ht1, Ht2, Ht3 and HtN1 resistance genes. Five different physiological races were observed based on the symptoms response of the differential maize lines. These races are race 0, race 1, race 3, race 23N and race 123N. E. turcicum race 3 was the most prevalent race having 26.6% frequency followed by race 0 (24.4%) and race 1 (22.2%) and the least prevalent races were race 23N and 123N having 13.3% each. Varied resistance response of different isolates was observed on differential lines having different resistant genes. Despite the fact that virulence was seen against all Ht resistance genes, NCLB control might be increased by combining qualitative Ht resistance genes with quantitative resistance.

3.
Artículo en Inglés | MEDLINE | ID: mdl-34574855

RESUMEN

A wide range of root-associated mutualistic microorganisms have been successfully applied and documented in the past for growth promotion, biofertilization, biofortification and biotic and abiotic stress amelioration in major crops. These microorganisms include nitrogen fixers, nutrient mobilizers, bio-remediators and bio-control agents. The present study aimed to demonstrate the impact of salt-tolerant compatible microbial inoculants on plant growth; Zn biofortification and yield of wheat (Triticum aestivum L.) crops grown in saline-sodic soil and insight of the mechanisms involved therein are being shared through this paper. Field experiments were conducted to evaluate the effects of Trichoderma harzianum UBSTH-501 and Bacillus amyloliquefaciens B-16 on wheat grown in saline-sodic soil at Research Farm, ICAR-Indian Institute of Seed Sciences, Kushmaur, India. The population of rhizosphere-associated microorganisms changed dramatically upon inoculation of the test microbes in the wheat rhizosphere. The co-inoculation induced a significant accumulation of proline and total soluble sugar in wheat at 30, 60, 90 and 120 days after sowing as compared to the uninoculated control. Upon quantitative estimation of organic solutes and antioxidant enzymes, these were found to have increased significantly in co-inoculated plants under salt-stressed conditions. The application of microbial inoculants enhanced the salt tolerance level significantly in wheat plants grown in saline-sodic soil. A significant increase in the uptake and translocation of potassium (K+) and calcium (Ca2+) was observed in wheat co-inoculated with the microbial inoculants, while a significant reduction in sodium (Na+) content was recorded in plants treated with both the bio-agents when compared with the respective uninoculated control plants. Results clearly indicated that significantly higher expression of TaHKT-1 and TaNHX1 in the roots enhances salt tolerance effectively by maintaining the Na+/K+ balance in the plant tissue. It was also observed that co-inoculation of the test inoculants increased the expression of ZIP transporters (2-3.5-folds) which ultimately led to increased biofortification of Zn in wheat grown in saline-sodic soil. Results suggested that co-inoculation of T. harzianum UBSTH-501 and B. amyloliquefaciens B-16 not only increased plant growth but also improved total grain yield along with a reduction in seedling mortality in the early stages of crop growth. In general, the present investigation demonstrated the feasibility of using salt-tolerant rhizosphere microbes for plant growth promotion and provides insights into plant-microbe interactions to ameliorate salt stress and increase Zn bio-fortification in wheat.


Asunto(s)
Inoculantes Agrícolas , Triticum , Biofortificación , Hypocreales , Raíces de Plantas , Suelo , Zinc
4.
PLoS One ; 8(6): e66180, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23776629

RESUMEN

Rice blast, caused by Magnaporthe oryzae, causes yield losses associated with injuries on leaves and necks, the latter being in general far more important than the former. Many questions remain on the relationships between leaf and neck blast, including questions related to the population biology of the pathogen. Our objective was to test the hypothesis of adaptation of M. oryzae isolates to the type of organ they infect. To that aim, the components of aggressiveness of isolates originating from leaves and necks were measured. Infection efficiency, latent period, sporulation intensity, and lesion size were measured on both leaves and necks. Univariate and multivariate analyses indicated that isolates originating from leaves were less aggressive than isolates originating from necks, when aggressiveness components were measured on leaves as well as on necks, indicating that there is no specialization within the pathogen population with respect to the type of organ infected. This result suggests that the more aggressive isolates involved in epidemics on leaves during the vegetative stage of the crop cycle have a higher probability to infect necks, and that a population shift may occur during disease transmission from leaves to necks. Implications for disease management are discussed.


Asunto(s)
Magnaporthe/patogenicidad , Oryza/microbiología , Hojas de la Planta/microbiología , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA