Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Environ Res ; 214(Pt 1): 113821, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35810815

RESUMEN

Plants can achieve their proper growth and development with the help of microorganisms associated with them. Plant-associated microbes convert the unavailable nutrients to available form and make them useful for plants. Besides nutrient acquisition, soil microbes also inhibit the pathogens that cause harm to plant growth and induces defense response. Due to the beneficial activities of soil nutrient-microbe-plant interactions, it is necessary to study more on this topic and develop microbial inoculant technology in the agricultural field for better crop improvement. The soil microbes can be engineered, and plant growth-promoting rhizobacteria (PGPR) and plant growth-promoting bacteria (PGPB) technology can be developed as well, as its application can be improved for utilization as biofertilizer, biopesticides, etc., instead of using harmful chemical biofertilizers. Moreover, plant growth-promoting microbe inoculants can enhance crop productivity. Although, scientists have discussed several tools and techniques by omics and gene editing approaches for crop improvement to avoid biotic and abiotic stress and make the plant healthier and more nutritive. However, beneficial soil microbes that help plants with the nutrient acquisition, development, and stress resistance were ignored, and farmers started utilizing chemical fertilizers. Thus, this review attempts to summarize the interaction system of plant microbes, the role of beneficiary soil microbes in the rhizosphere zone, and their role in plant health promotion, particularly in the nutrition acquisition of the plant. The review will also provide a better understanding of soil microbes that can be exploited as biofertilizers and plant growth promoters in the field to create environmentally friendly, sustainable agriculture systems.


Asunto(s)
Microbiología del Suelo , Suelo , Agricultura , Nutrientes , Desarrollo de la Planta , Plantas
2.
Nutr Cancer ; 68(7): 1210-24, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27618154

RESUMEN

ABSTACT Artemisia nilagirica (Clarke) is a widely used medicinal herb in Indian traditional system of medicine. Therefore, the present study was designed to evaluate the effects of A. nilagirica extracts/fractions on inhibition of proliferation and apoptosis in a human monocytic leukemia (THP-1) cell line. The crude extracts (A. nilagirica ethyl acetate extract [ANE] and A. nilagirica methanolic extract [ANA]) showed cytotoxic activity toward THP-1 cells with the IC50 values of 38.21 ± 7.37 and 132.41 ± 7.19 µg/ml, respectively. However, the cytotoxic activity of active fractions (ANE-B and ANM-9) obtained after column chromatography was found to be much more pronounced than their parent extracts. The IC50 values of ANE-B and ANM-9 were found to be 27.04 ± 2.54 µg/ml and 12.70 ± 4.79 µg/ml, respectively, suggesting greater susceptibility of the malignant cells. Cell cycle analysis and terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end-labeling (TUNEL) assay revealed that inhibition of cell growth by A. nilagirica fractions on THP-1 cells was mediated by apoptosis. Active fractions of A. nilagirica increased the expression levels of caspase-3, -7, and poly-ADP-ribose polymerase (PARP), a critical member of the apoptotic pathway. These results suggested that active fractions of A. nilagirica may play a promising role in growth suppression by inducing apoptosis in human monocytic leukemic cells via mitochondria-dependent and death receptor-dependent apoptotic pathways.


Asunto(s)
Anticarcinógenos/aislamiento & purificación , Antineoplásicos Fitogénicos/aislamiento & purificación , Apoptosis/efectos de los fármacos , Artemisia/química , Leucemia Monocítica Aguda/tratamiento farmacológico , Macrófagos Peritoneales/efectos de los fármacos , Animales , Anticarcinógenos/efectos adversos , Anticarcinógenos/química , Anticarcinógenos/farmacología , Antineoplásicos Fitogénicos/efectos adversos , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Bioensayo , Caspasa 3/química , Caspasa 3/genética , Caspasa 3/metabolismo , Caspasa 7/química , Caspasa 7/genética , Caspasa 7/metabolismo , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , India , Concentración 50 Inhibidora , Leucemia Monocítica Aguda/metabolismo , Leucemia Monocítica Aguda/patología , Macrófagos Peritoneales/citología , Ratones Endogámicos BALB C , Proteínas de Neoplasias/agonistas , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Extractos Vegetales/efectos adversos , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Poli(ADP-Ribosa) Polimerasas/química , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Células THP-1
3.
Funct Integr Genomics ; 15(4): 425-37, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25648443

RESUMEN

Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight disease in rice and brutally affects the yield up to 50 % of total production. Here, we report a comparative proteomics analysis of total foliar protein isolated from infected rice leaves of susceptible Pusa Basmati 1 (PB1) and resistant Oryza longistaminata genotypes. Two-dimensional gel electrophoresis (2-DE) coupled with matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) approaches identified 29 protein spots encoding unique proteins from both the genotypes. Identified proteins belonged to a large number of biological and molecular functions related to biotic and abiotic stress proteins which are potentially involved during Xoo infection. Biotic and abiotic stress-related proteins were induced during Xoo infection, indicating the activation of common stress pathway during bacterial blight infection. Candidate genes conferring tolerance against bacterial blight, which include germin-like protein, putative r40c1, cyclin-dependent kinase C, Ent-isokaur-15-ene synthase and glutathione-dependent dehydroascorbate reductase 1 (GSH-DHAR1), were also induced, with germin-like proteins induced only in the resistant rice genotype O. longistaminata. Energy, metabolism and hypothetical proteins were common among both the genotypes. Further, host defence/stress-related proteins were mostly expressed in resistant genotype O. longistaminata, indicating possible co-evolution of the pathogen and the wild rice, O. longistaminata.


Asunto(s)
Resistencia a la Enfermedad/genética , Oryza/genética , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Estrés Fisiológico , Xanthomonas/patogenicidad , Proteína Quinasa CDC2/genética , Proteína Quinasa CDC2/metabolismo , Cadmio/toxicidad , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Oryza/efectos de los fármacos , Oryza/microbiología , Proteínas de Plantas/genética , Proteoma/genética
4.
Planta ; 238(2): 293-305, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23652799

RESUMEN

Xa27 is one of the important R-genes, effective against bacterial blight disease of rice caused by Xanthomonas oryzae pv. oryzae (Xoo). Using natural population of Oryza, we analyzed the sequence variation in the functionally important domains of Xa27 across the Oryza species. DNA sequences of Xa27 alleles from 27 rice accessions revealed higher nucleotide diversity among the reported R-genes of rice. Sequence polymorphism analysis revealed synonymous and non-synonymous mutations in addition to a number of InDels in non-coding regions of the gene. High sequence variation was observed in the promoter region including the 5'UTR with 'π' value 0.00916 and 'θ w ' = 0.01785. Comparative analysis of the identified Xa27 alleles with that of IRBB27 and IR24 indicated the operation of both positive selection (Ka/Ks > 1) and neutral selection (Ka/Ks ≈ 0). The genetic distances of alleles of the gene from Oryza nivara were nearer to IRBB27 as compared to IR24. We also found the presence of conserved and null UPT (upregulated by transcriptional activator) box in the isolated alleles. Considerable amino acid polymorphism was localized in the trans-membrane domain for which the functional significance is yet to be elucidated. However, the absence of functional UPT box in all the alleles except IRBB27 suggests the maintenance of single resistant allele throughout the natural population.


Asunto(s)
Oryza/genética , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/genética , Proteínas de Plantas/genética , Polimorfismo Genético , Xanthomonas/fisiología , Alelos , Secuencia de Aminoácidos , ADN de Plantas/química , ADN de Plantas/genética , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Sitios Genéticos , Datos de Secuencia Molecular , Oryza/inmunología , Oryza/microbiología , Fenotipo , Filogenia , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Alineación de Secuencia , Análisis de Secuencia de ADN , Especificidad de la Especie
5.
Front Plant Sci ; 14: 1173063, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37692438

RESUMEN

Bacterial blight disease of rice caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most serious constraints in rice production. The most sustainable strategy to combat the disease is the deployment of host plant resistance. Earlier, we identified an introgression line, IR 75084-15-3-B-B, derived from Oryza officinalis possessing broad-spectrum resistance against Xoo. In order to understand the inheritance of resistance in the O. officinalis accession and identify genomic region(s) associated with resistance, a recombinant inbred line (RIL) mapping population was developed from the cross Samba Mahsuri (susceptible to bacterial blight) × IR 75084-15-3-B-B (resistant to bacterial blight). The F2 population derived from the cross segregated in a phenotypic ratio of 3: 1 (resistant susceptible) implying that resistance in IR 75084-15-3-B-B is controlled by a single dominant gene/quantitative trait locus (QTL). In the F7 generation, a set of 47 homozygous resistant lines and 47 homozygous susceptible lines was used to study the association between phenotypic data obtained through screening with Xoo and genotypic data obtained through analysis of 7K rice single-nucleotide polymorphism (SNP) chip. Through composite interval mapping, a major locus was detected in the midst of two flanking SNP markers, viz., Chr11.27817978 and Chr11.27994133, on chromosome 11L with a logarithm of the odds (LOD) score of 10.21 and 35.93% of phenotypic variation, and the locus has been named Xa48t. In silico search in the genomic region between the two markers flanking Xa48t identified 10 putatively expressed genes located in the region of interest. The quantitative expression and DNA sequence analysis of these genes from contrasting parents identified the Os11g0687900 encoding an NB-ARC domain-containing protein as the most promising gene associated with resistance. Interestingly, a 16-bp insertion was noticed in the untranslated region (UTR) of the gene in the resistant parent, IR 75084-15-3-B-B, which was absent in Samba Mahsuri. The association of Os11g0687900 with resistance phenotype was further established by sequence-based DNA marker analysis in the RIL population. A co-segregating PCR-based INDEL marker, Marker_Xa48, has been developed for use in the marker-assisted breeding of Xa48t.

6.
Front Plant Sci ; 11: 1152, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849710

RESUMEN

Rice is the most important food crop worldwide and sustainable rice production is important for ensuring global food security. Biotic stresses limit rice production significantly and among them, bacterial blight (BB) disease caused by Xanthomonas oryzae pv. oryzae (Xoo) is very important. BB reduces rice yields severely in the highly productive irrigated and rainfed lowland ecosystems and in recent years; the disease is spreading fast to other rice growing ecosystems as well. Being a vascular pathogen, Xoo interferes with a range of physiological and biochemical exchange processes in rice. The response of rice to Xoo involves specific interactions between resistance (R) genes of rice and avirulence (Avr) genes of Xoo, covering most of the resistance genes except the recessive ones. The genetic basis of resistance to BB in rice has been studied intensively, and at least 44 genes conferring resistance to BB have been identified, and many resistant rice cultivars and hybrids have been developed and released worldwide. However, the existence and emergence of new virulent isolates of Xoo in the realm of a rapidly changing climate necessitates identification of novel broad-spectrum resistance genes and intensification of gene-deployment strategies. This review discusses about the origin and occurrence of BB in rice, interactions between Xoo and rice, the important roles of resistance genes in plant's defense response, the contribution of rice resistance genes toward development of disease resistance varieties, identification and characterization of novel, and broad-spectrum BB resistance genes from wild species of Oryza and also presents a perspective on potential strategies to achieve the goal of sustainable disease management.

7.
Front Chem ; 7: 787, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31799242

RESUMEN

In general, neurodegenerative disorders have a great deal of correlation with the misfolded as well as aggregated forms of protein-based macromolecules. Among various species formed during the aggregation process, protein oligomers have been classified as most toxic entities against several types of living cells. A series of chemicals have been developed to inhibit protein aggregation as a measure to regulate neurodegenerative diseases. Recently, various classes of nanoparticles have also been reported to inhibit protein aggregation. In the present study, we synthesized fluorescent gold nanoparticles (B-AuNPs) employing Olax scandens leaf extract. Next, an in vitro study was performed to assess the effect of as-synthesized B-AuNPs on the aggregation behavior of the ovalbumin (OVA) and other related model proteins. We performed an extensive study to elucidate anti-amyloidogenic properties of nano-sized entities and established that small-sized B-AuNPs manifest chaperone potential against protein aggregation. Further, we exploited as-synthesized B-AuNPs as a mean to prevent protein aggregation mediated toxicity in neuroblastoma cells.

8.
PLoS One ; 10(3): e0120186, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25807168

RESUMEN

Nucleotide sequence polymorphisms among R gene alleles influence the process of co-evolutionary interaction between host and pathogen by shaping the response of host plants towards invading pathogens. Here, we present the DNA sequence polymorphisms and diversities present among natural alleles of three rice bacterial blight resistance genes, Xa21, Xa26 and xa5. The diversity was examined across different wild relatives and cultivars of Oryza species. Functional significance of selected alleles was evaluated through semi-quantitative reverse transcription polymerase chain reaction and real time PCR. The greatest nucleotide diversity and singleton variable sites (SVS) were present in Xa26 (π = 0.01958; SVS = 182) followed by xa5 and Xa21 alleles. The highest frequency of single nucleotide polymorphisms were observed in Xa21 alleles and least in xa5. Transition bias was observed in all the genes and 'G' to 'A' transitions were more favored than other form of transitions. Neutrality tests failed to show the presence of selection at these loci, though negative Tajima's D values indicate the presence of a rare form of polymorphisms. At the interspecies level, O. nivara exhibited more diversity than O. sativa. We have also identified two nearly identical resistant alleles of xa5 and two sequentially identical alleles of Xa21. The alleles of xa5 showed basal levels of expression while Xa21 alleles were functionally not expressed.


Asunto(s)
Resistencia a la Enfermedad/genética , Genes de Plantas , Oryza/genética , Regiones no Traducidas 3' , Alelos , ADN de Plantas/análisis , Evolución Molecular , Sitios Genéticos , Variación Genética , Oryza/clasificación , Filogenia , Proteínas de Plantas/genética , Polimorfismo de Nucleótido Simple , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA