Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Comput Assist Radiol Surg ; 19(2): 273-281, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37796413

RESUMEN

PURPOSE: Fully convolutional neural networks architectures have proven to be useful for brain tumor segmentation tasks. However, their performance in learning long-range dependencies is limited to their localized receptive fields. On the other hand, vision transformers (ViTs), essentially based on a multi-head self-attention mechanism, which generates attention maps to aggregate spatial information dynamically, have outperformed convolutional neural networks (CNNs). Inspired by the recent success of ViT models for the medical images segmentation, we propose in this paper a new network based on Swin transformer for semantic brain tumor segmentation. METHODS: The proposed method for brain tumor segmentation combines Transformer and CNN modules as an encoder-decoder structure. The encoder incorporates ELSA transformer blocks used to enhance local detailed feature extraction. The extracted feature representations are fed to the decoder part via skip connections. The encoder part includes channel squeeze and spatial excitation blocks, which enable the extracted features to be more informative both spatially and channel-wise. RESULTS: The method is evaluated on the public BraTS 2021 datasets containing 1251 cases of brain images, each with four 3D MRI modalities. Our proposed approach achieved excellent segmentation results with an average Dice score of 89.77% and an average Hausdorff distance of 8.90 mm. CONCLUSION: We developed an automated framework for brain tumor segmentation using Swin transformer and enhanced local self-attention. Experimental results show that our method outperforms state-of-th-art 3D algorithms for brain tumor segmentation.


Asunto(s)
Neoplasias Encefálicas , Humanos , Neoplasias Encefálicas/diagnóstico por imagen , Encéfalo , Algoritmos , Aprendizaje , Redes Neurales de la Computación , Procesamiento de Imagen Asistido por Computador
2.
Comput Med Imaging Graph ; 106: 102218, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36947921

RESUMEN

Brain tumor is one of the leading causes of cancer death. The high-grade brain tumors are easier to recurrent even after standard treatment. Therefore, developing a method to predict brain tumor recurrence location plays an important role in the treatment planning and it can potentially prolong patient's survival time. There is still little work to deal with this issue. In this paper, we present a deep learning-based brain tumor recurrence location prediction network. Since the dataset is usually small, we propose to use transfer learning to improve the prediction. We first train a multi-modal brain tumor segmentation network on the public dataset BraTS 2021. Then, the pre-trained encoder is transferred to our private dataset for extracting the rich semantic features. Following that, a multi-scale multi-channel feature fusion model and a nonlinear correlation learning module are developed to learn the effective features. The correlation between multi-channel features is modeled by a nonlinear equation. To measure the similarity between the distributions of original features of one modality and the estimated correlated features of another modality, we propose to use Kullback-Leibler divergence. Based on this divergence, a correlation loss function is designed to maximize the similarity between the two feature distributions. Finally, two decoders are constructed to jointly segment the present brain tumor and predict its future tumor recurrence location. To the best of our knowledge, this is the first work that can segment the present tumor and at the same time predict future tumor recurrence location, making the treatment planning more efficient and precise. The experimental results demonstrated the effectiveness of our proposed method to predict the brain tumor recurrence location from the limited dataset.


Asunto(s)
Neoplasias Encefálicas , Recurrencia Local de Neoplasia , Humanos , Neoplasias Encefálicas/diagnóstico por imagen , Encéfalo , Procesamiento de Imagen Asistido por Computador
3.
Stud Health Technol Inform ; 294: 347-351, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35612094

RESUMEN

Biomedical ontologies define concepts having biomedical significance and the semantic relations among them. Developing high-quality and reusable ontologies in the biomedical domain is a challenging task. Pattern-based ontology design is considered a promising approach to overcome the challenges. Ontology Design Patterns (ODPs) are reusable modeling solutions to facilitate ontology development. This study relies on ODPs to semantically enrich biomedical ontologies by assigning logical definitions to ontological entities. Specifically, pattern-based logical definitions grounded on dispositions are given to prenatal disorders. The proposed approach is performed under the supervision of fetal domain experts.


Asunto(s)
Ontologías Biológicas , Lógica , Semántica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA