Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Int J Mol Sci ; 24(21)2023 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-37958717

RESUMEN

The current study focuses on the synthesis via combustion of dysprosium-doped cobalt ferrites that were subsequently physicochemically analyzed in terms of morphological and magnetic properties. Three types of doped nanoparticles were prepared containing different Dy substitutions and coated with HPGCD for higher dispersion properties and biocompatibility, and were later submitted to biological tests in order to reveal their potential anticancer utility. Experimental data obtained through FTIR, XRD, SEM and TEM confirmed the inclusion of Dy3+ ions in the nanoparticles' structure. The size of the newly formed nanoparticles ranged between 20 and 50 nm revealing an inverse proportional relationship with the Dy content. Magnetic studies conducted by VSM indicated a decrease in remanent and saturation mass magnetization, respectively, in Dy-doped nanoparticles in a direct proportionality with the Dy content; the decrease was further amplified by cyclodextrin complexation. Biological assessment in the presence/absence of red light revealed a significant cytotoxic activity in melanoma (A375) and breast (MCF-7) cancer cells, while healthy keratinocytes (HaCaT) remained generally unaffected, thus revealing adequate selectivity. The investigation of the underlying cytotoxic molecular mechanism revealed an apoptotic process as indicated by nuclear fragmentation and shrinkage, as well as by Western blot analysis of caspase 9, p53 and cyclin D1 proteins. The anticancer activity for all doped Co ferrites varied was in a direct correlation to their Dy content but without being affected by the red light irradiation.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Melanoma , Nanopartículas , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Células MCF-7 , Nanopartículas/química , Luz , Antineoplásicos/farmacología , Antineoplásicos/metabolismo , Melanoma/tratamiento farmacológico
2.
Molecules ; 28(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36615613

RESUMEN

One of several promising strategies for increasing the bioavailability and therapeutic potential of high-lipophilic biologically active compounds is gold nanoparticle formulation. The current study describes the synthesis and biological antimelanoma evaluation of three triterpen-functionalized gold nanoparticles, obtained using our previously reported antimelanoma benzotriazole-triterpenic acid esters. Functionalized gold nanoparticle (GNP) formation was validated through UV-VIS and FTIR spectroscopy. The conjugate's cytotoxic effects were investigated using HaCaT healthy keratinocytes and A375 human melanoma cells. On A375 cells, all three conjugates demonstrated dose-dependent cytotoxic activity, but no significant cytotoxic effects were observed on normal HaCaT keratinocytes. GNP-conjugates were found to be more cytotoxic than their parent compounds. After treatment with all three GNP-conjugates, 4,6'-diamidino-2-phenylindole (DAPI) staining revealed morphological changes consistent with apoptosis in A375 melanoma cells. Quantitative real-time polymerase chain reaction (RT-qPCR) analysis revealed that the triterpene-GNP conjugate treated A375 melanoma cells had a fold change increase in Bcl-2-associated X protein (BAX) expression and a fold change decrease in B-cell lymphoma 2 (Bcl-2) expression. In A735 melanoma cells, high-resolution respirometry studies revealed that all three GNP-conjugates act as selective inhibitors of mitochondrial function. Furthermore, by examining the effect on each mitochondrial respiratory rate, the results indicate that all three conjugates are capable of increasing the production of reactive oxygen species (ROS), an apoptosis trigger in cancer cells.


Asunto(s)
Antineoplásicos , Melanoma , Nanopartículas del Metal , Humanos , Oro/química , Nanopartículas del Metal/química , Apoptosis , Melanoma/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral
3.
Int J Mol Sci ; 23(2)2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35054925

RESUMEN

Triterpenic compounds stand as a widely investigated class of natural compounds due to their remarkable therapeutic potential. However, their use is currently being hampered by their low solubility and, subsequently, bioavailability. In order to overcome this drawback and increase the therapeutic use of triterpenes, cyclodextrins have been introduced as water solubility enhancers; cyclodextrins are starch derivatives that possess hydrophobic internal cavities that can incorporate lipophilic molecules and exterior surfaces that can be subjected to various derivatizations in order to improve their biological behavior. This review aims to summarize the most recent achievements in terms of triterpene:cyclodextrin inclusion complexes and bioconjugates, emphasizing their practical applications including the development of new isolation and bioproduction protocols, the elucidation of their underlying mechanism of action, the optimization of triterpenes' therapeutic effects and the development of new topical formulations.


Asunto(s)
Ciclodextrinas/química , Diseño de Fármacos , Desarrollo de Medicamentos , Triterpenos/química , Triterpenos/farmacología , Fenómenos Químicos , Ciclodextrinas/clasificación , Composición de Medicamentos , Humanos , Estructura Molecular , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Relación Estructura-Actividad , Triterpenos/aislamiento & purificación
4.
Int J Mol Sci ; 23(16)2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-36012159

RESUMEN

Triterpenic acids are a widespread class of phytocompounds which have been found to possess valuable therapeutic properties such as anticancer, anti-inflammatory, hepatoprotective, cardioprotective, antidiabetic, neuroprotective, lipolytic, antiviral, and antiparasitic effects. They are a subclass of triterpenes bearing a characteristic lipophilic structure that imprints unfavorable in vivo properties which subsequently limit their applications. The early investigation of the mechanism of action (MOA) of a drug candidate can provide valuable information regarding the possible side effects and drug interactions that may occur after administration. The current paper aimed to summarize the most recent (last 5 years) studies regarding the MOA of betulinic acid, boswellic acid, glycyrrhetinic acid, madecassic acid, moronic acid, and pomolic acid in order to provide scientists with updated and accessible material on the topic that could contribute to the development of future studies; the paper stands as the sequel of our previously published paper regarding the MOA of triterpenic acids with therapeutic value. The recent literature published on the topic has highlighted the role of triterpenic acids in several signaling pathways including PI3/AKT/mTOR, TNF-alpha/NF-kappa B, JNK-p38, HIF-α/AMPK, and Grb2/Sos/Ras/MAPK, which trigger their various biological activities.


Asunto(s)
Triterpenos , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Triterpenos/química , Triterpenos/farmacología , Triterpenos/uso terapéutico
5.
Int J Mol Sci ; 23(14)2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35887090

RESUMEN

Triterpenic acids are phytocompounds with a widespread range of biological activities that have been the subject of numerous in vitro and in vivo studies. However, their underlying mechanisms of action in various pathologies are not completely elucidated. The current review aims to summarize the most recent literature, published in the last five years, regarding the mechanism of action of three triterpenic acids (asiatic acid, oleanolic acid, and ursolic acid), corelated with different biological activities such as anticancer, anti-inflammatory, antidiabetic, cardioprotective, neuroprotective, hepatoprotective, and antimicrobial. All three discussed compounds share several mechanisms of action, such as the targeted modulation of the PI3K/AKT, Nrf2, NF-kB, EMT, and JAK/STAT3 signaling pathways, while other mechanisms that proved to only be specific for a part of the triterpenic acids discussed, such as the modulation of Notch, Hippo, and MALAT1/miR-206/PTGS1 signaling pathway, were highlighted as well. This paper stands as the first part in our literature study on the topic, which will be followed by a second part focusing on other triterpenic acids of therapeutic value.


Asunto(s)
Ácido Oleanólico , Triterpenos , Antiinflamatorios , Ácido Oleanólico/farmacología , Fosfatidilinositol 3-Quinasas , Extractos Vegetales/farmacología , Triterpenos/farmacología , Triterpenos/uso terapéutico
6.
Int J Mol Sci ; 23(3)2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35163063

RESUMEN

The last decade has witnessed a sustained increase in the research development of modern-day chemo-therapeutics, especially for those used for high mortality rate pathologies. However, the therapeutic landscape is continuously changing as a result of the currently existing toxic side effects induced by a substantial range of drug classes. One growing research direction driven to mitigate such inconveniences has converged towards the study of natural molecules for their promising therapeutic potential. Triterpenes are one such class of compounds, intensively investigated for their therapeutic versatility. Although the pharmacological effects reported for several representatives of this class has come as a well-deserved encouragement, the pharmacokinetic profile of these molecules has turned out to be an unwelcomed disappointment. Nevertheless, the light at the end of the tunnel arrived with the development of nanotechnology, more specifically, the use of liposomes as drug delivery systems. Liposomes are easily synthesizable phospholipid-based vesicles, with highly tunable surfaces, that have the ability to transport both hydrophilic and lipophilic structures ensuring superior drug bioavailability at the action site as well as an increased selectivity. This study aims to report the results related to the development of different types of liposomes, used as targeted vectors for the delivery of various triterpenes of high pharmacological interest.


Asunto(s)
Liposomas/química , Triterpenos/administración & dosificación , Ensayos Clínicos como Asunto , Sistemas de Liberación de Medicamentos , Humanos , Nanopartículas , Triterpenos/química
7.
Int J Mol Sci ; 23(17)2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36077389

RESUMEN

Pentacyclic triterpenes, such as betulinic, ursolic, and oleanolic acids are efficient and selective anticancer agents whose underlying mechanisms of action have been widely investigated. The introduction of N-bearing heterocycles (e.g., triazoles) into the structures of natural compounds (particularly pentacyclic triterpenes) has yielded semisynthetic derivatives with increased antiproliferative potential as opposed to unmodified starting compounds. In this work, we report the synthesis and biological assessment of benzotriazole esters of betulinic acid (BA), oleanolic acid (OA), and ursolic acid (UA) (compounds 1-3). The esters were obtained in moderate yields (28-42%). All three compounds showed dose-dependent reductions in cell viability against A375 melanoma cells and no cytotoxic effects against healthy human keratinocytes. The morphology analysis of treated cells showed characteristic apoptotic changes consisting of nuclear shrinkage, condensation, fragmentation, and cellular membrane disruption. rtPCR analysis reinforced the proapoptotic evidence, showing a reduction in anti-apoptotic Bcl-2 expression and upregulation of the pro-apoptotic Bax. High-resolution respirometry studies showed that all three compounds were able to significantly inhibit mitochondrial function. Molecular docking showed that compounds 1-3 showed an increase in binding affinity against Bcl-2 as opposed to BA, OA, and UA and similar binding patterns compared to known Bcl-2 inhibitors.


Asunto(s)
Ácido Oleanólico , Triterpenos , Apoptosis , Línea Celular Tumoral , Ésteres/farmacología , Humanos , Simulación del Acoplamiento Molecular , Ácido Oleanólico/química , Ácido Oleanólico/farmacología , Triterpenos Pentacíclicos/farmacología , Proteínas Proto-Oncogénicas c-bcl-2 , Triazoles/farmacología , Triterpenos/química , Triterpenos/farmacología
8.
Molecules ; 27(22)2022 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-36431906

RESUMEN

Cancer, in all its types and manifestations, remains one of the most frequent causes of death worldwide; an important number of anticancer drugs have been developed from plants, fungi and animals, starting with natural compounds that were later derivatized in order to achieve an optimized pharmacokinetic/pharmacological profile. Betulinic acid is a pentacyclic triterpenic compound that was identified as an anticancer agent whose main advantage consists in its selective activity, which ensures the almost total lack of cytotoxic side effects. Conjugates of betulinic acid with substituted triazoles, scaffolds with significant pharmacological properties, were synthesized and tested as anticancer agents in order to achieve new therapeutic alternatives. The current paper aims to obtain a C30-1,2,4-triazole derivative of betulinic acid simultaneously acetylated at C3 whose biological activity was tested against RPMI melanoma cells. The compound revealed significant cytotoxic effects at the tested concentrations (2, 10 and 50 µΜ) by significantly decreasing the cell viability to 88.3%, 54.7% and 24.5%, respectively, as compared to the control. The compound's testing in normal HaCaT cells showed a lack of toxicity, which indicates its selective dose-dependent anticancer activity. The investigation of its underlying molecular mechanism revealed an apoptotic effect induced at the mitochondrial level, which was validated through high-resolution respirometry studies.


Asunto(s)
Antineoplásicos , Triterpenos , Animales , Triterpenos/farmacología , Triterpenos/uso terapéutico , Triazoles/farmacología , Antineoplásicos/farmacología , Ácido Betulínico
9.
Molecules ; 27(21)2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36364186

RESUMEN

Betulinic acid (BA) has been extensively studied in recent years mainly for its antiproliferative and antitumor effect in various types of cancers. Limited data are available regarding the pharmacokinetic profile of BA, particularly its metabolic transformation in vivo. In this study, we present the screening and structural investigations by ESI Orbitrap MS in the negative ion mode and CID MS/MS of phase I and phase II metabolites detected in mouse plasma after the intraperitoneal administration of a nanoemulsion containing BA in SKH 1 female mice. Obtained results indicate that the main phase I metabolic reactions that BA undergoes are monohydroxylation, dihydroxylation, oxidation and hydrogenation, while phase II reactions involved sulfation, glucuronidation and methylation. The fragmentation pathway for BA and its plasma metabolites were elucidated by sequencing of the precursor ions by CID MS MS experiments.


Asunto(s)
Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem , Femenino , Ratones , Animales , Espectrometría de Masas en Tándem/métodos , Triterpenos Pentacíclicos , Iones , Espectrometría de Masa por Ionización de Electrospray/métodos , Cromatografía Líquida de Alta Presión/métodos , Ácido Betulínico
10.
Molecules ; 27(19)2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36235089

RESUMEN

Medicinal plants have been used by humans since ancient times for the treatment of various diseases and currently represent the main source of a variety of phytocompounds, such as triterpenes. Pentacyclic triterpenes have been subjected to numerous studies that have revealed various biological activities, such as anticancer, antidiabetic, anti-inflammatory, antimicrobial, and hepatoprotective effects, which can be employed in therapy. However, due to their high lipophilicity, which is considered to exert a significant influence on their bioavailability, their current use is limited. A frequent approach employed to overcome this obstacle is the chemical derivatization of the core structure with different types of moieties including heterocycles, which are considered key elements in medicinal chemistry. The present review aims to summarize the literature published in the last 10 years regarding the derivatives of pentacyclic triterpenes bearing heterocyclic moieties and focuses on the biologically active derivatives as well as their structure-activity relationships. Predominantly, the targeted positions for the derivatization of the triterpene skeleton are C-3 (hydroxyl/oxo group), C-28 (hydroxyl/carboxyl group), and C-30 (allylic group) or the extension of the main scaffold by fusing various heterocycles with the A-ring of the phytocompound. In addition, numerous derivatives also contain linker moieties that connect the triterpenic scaffold with heterocycles; one such linker, the triazole moiety, stands out as a key pharmacophore for its biological effect. All these studies support the hypothesis that triterpenoid conjugates with heterocyclic moieties may represent promising candidates for future clinical trials.


Asunto(s)
Ácido Oleanólico , Plantas Medicinales , Triterpenos , Humanos , Hipoglucemiantes , Triterpenos Pentacíclicos/farmacología , Triazoles , Triterpenos/química
11.
Molecules ; 26(8)2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33921730

RESUMEN

Melissa officinalis (MO) is a medicinal plant well-known for its multiple pharmacological effects, including anti-inflammatory, anticancer and beneficial effects on skin recovery. In this context, the present study was aimed to investigate the in vitro and in vivo safety profile of an MO aqueous extract by assessing cell viability on normal (HaCaT-human keratinocytes) and tumor (A375-human melanoma) cells and its impact on physiological skin parameters by a non-invasive method. In addition, the antioxidant activity and the antiangiogenic potential of the extract were verified. A selective cytotoxic effect was noted in A375 cells, while no toxicity was noticed in healthy cells. The MO aqueous extract safety profile after topical application was investigated on SKH-1 mice, and an enhanced skin hydration and decreased erythema and transepidermal water loss levels were observed. The in ovo CAM assay, performed to investigate the potential modulating effect on the angiogenesis process and the blood vessels impact, indicated that at concentrations of 100 and 500 µg/mL, MO aqueous extract induced a reduction of thin capillaries. No signs of vascular toxicity were recorded at concentrations as high as 1000 µg/mL. The aqueous extract of MO leaves can be considered a promising candidate for skin disorders with impaired physiological skin parameters.


Asunto(s)
Antioxidantes/química , Melissa/química , Extractos Vegetales/química , Piel/metabolismo , Animales , Antioxidantes/uso terapéutico , Línea Celular , Supervivencia Celular/efectos de los fármacos , Ratones , Plantas Medicinales/química , Piel/efectos de los fármacos
12.
Molecules ; 25(21)2020 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-33158183

RESUMEN

Albendazole is a benzimidazole derivative with documented antitumor activity and low toxicity to healthy cells. The major disadvantage in terms of clinical use is its low aqueous solubility which limits its bioavailability. Albendazole was incorporated into stable and homogeneous polyurethane structures with the aim of obtaining an improved drug delivery system model. Spectral and thermal analysis was used to investigate the encapsulation process and confirmed the presence of albendazole inside the nanoparticles. The in vitro anticancer properties of albendazole encapsulated in polyurethane structures versus the un-encapsulated compound were tested on two breast cancer cell lines, MCF-7 and MDA-MB-231, in terms of cellular viability and apoptosis induction. The study showed that the encapsulation process enhanced the antitumor activity of albendazole on the MCF-7 and MDA-MB-23 breast cancer lines. The cytotoxic activity manifested in a concentration-dependent manner and was accompanied by changes in cell morphology and nuclear fragmentation.


Asunto(s)
Albendazol , Antineoplásicos , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Portadores de Fármacos , Nanopartículas , Albendazol/química , Albendazol/farmacocinética , Albendazol/farmacología , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Supervivencia Celular/efectos de los fármacos , Portadores de Fármacos/síntesis química , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacología , Femenino , Humanos , Células MCF-7 , Nanopartículas/química , Nanopartículas/uso terapéutico
13.
Molecules ; 25(23)2020 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-33256207

RESUMEN

Wounds are among the most common skin conditions, displaying a large etiological diversity and being characterized by different degrees of severity. Wound healing is a complex process that involves multiple steps such as inflammation, proliferation and maturation and ends with scar formation. Since ancient times, a widely used option for treating skin wounds are plant- based treatments which currently have become the subject of modern pharmaceutical formulations. Triterpenes with tetracyclic and pentacyclic structure are extensively studied for their implication in wound healing as well as to determine their molecular mechanisms of action. The current review aims to summarize the main results of in vitro, in vivo and clinical studies conducted on lupane, ursane, oleanane, dammarane, lanostane and cycloartane type triterpenes as potential wound healing treatments.


Asunto(s)
Triterpenos Pentacíclicos/química , Triterpenos Pentacíclicos/farmacología , Triterpenos Pentacíclicos/uso terapéutico , Cicatrización de Heridas/efectos de los fármacos , Animales , Ensayos Clínicos como Asunto , Evaluación Preclínica de Medicamentos , Humanos , Conformación Molecular , Estructura Molecular , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Piel/anatomía & histología , Enfermedades de la Piel/tratamiento farmacológico , Enfermedades de la Piel/etiología , Enfermedades de la Piel/patología , Fenómenos Fisiológicos de la Piel , Relación Estructura-Actividad , Resultado del Tratamiento
14.
Molecules ; 24(17)2019 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-31450704

RESUMEN

Artemisia species are used worldwide for their antioxidant, antimicrobial and anti-inflammatory properties. This research was designed to investigate the phytochemical profile of two ethanolic extracts obtained from leaves and stems of A. absinthium L. as well as the biological potential (antioxidant activity, cytotoxic, anti-migratory and anti-inflammatory properties). Both plant materials showed quite similar thermogravimetric, FT-IR phenolic profile (high chlorogenic acid) with mild antioxidant capacity [ascorbic acid (0.02-0.1) > leaves (0.1-2.0) > stem (0.1-2.0)]. Alcoholic extracts from these plant materials showed a cytotoxic effect against A375 (melanoma) and MCF7 (breast adenocarcinoma) and affected less the non-malignant HaCaT cells (human keratinocytes) at 72 h post-stimulation and this same trend was observed in the anti-migratory (A375, MCF7 > HaCat) assay. Lastly, extracts ameliorated the pro-inflammatory effect of TPA (12-o-tetradecanoylphorbol-13-acetate) in mice ears, characterized by a diffuse neutrophil distribution with no exocytosis or micro-abscesses.


Asunto(s)
Artemisia absinthium/química , Suplementos Dietéticos/análisis , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Rastreo Diferencial de Calorimetría , Línea Celular Tumoral , Descubrimiento de Drogas , Humanos , Concentración 50 Inhibidora , Análisis Espectral
15.
Anal Chem ; 88(10): 5166-78, 2016 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-27088833

RESUMEN

The progress of ion mobility spectrometry (IMS), together with its association to mass spectrometry (MS), opened new directions for the identification of various metabolites in complex biological matrices. However, glycolipidomics of the human brain by IMS MS represents an area untouched up to now, because of the difficulties encountered in brain sampling, analyte extraction, and IMS MS method optimization. In this study, IMS MS was introduced in human brain ganglioside (GG) research. The efficiency of the method in clinical glycolipidomics was demonstrated on a highly complex mixture extracted from a normal fetal frontal lobe (FL37). Using this approach, a remarkably rich molecular ion pattern was discovered, which proved the presence of a large number of glycoforms and an unpredicted diversity of the ceramide chains. Moreover, the results showed for the first time the occurrence of GGs in the human brain with a much higher degree of sialylation than previously reported. Using IMS MS, the entire series starting from mono- up to octasialylated GGs was detected in FL37. These findings substantiate early clinical reports on the direct correlation between GG sialylation degree and brain developmental stage. Using IMS CID MS/MS, applied here for the first time to gangliosides, a novel, tetrasialylated O-GalNAc modified species with a potential biomarker role in brain development was structurally characterized. Under variable collision energy, a high number of sequence ions was generated for the investigated GalNAc-GQ1(d18:1/18:0) species. Several fragment ions documented the presence of the tetrasialo element attached to the inner Gal, indicating that GalNAc-GQ1(d18:1/18:0) belongs to the d series.


Asunto(s)
Gangliósidos/análisis , Espectrometría de Masa por Ionización de Electrospray/métodos , Ceramidas/química , Lóbulo Frontal/química , Galactosamina/química , Humanos , Estructura Molecular
16.
Glycoconj J ; 31(3): 231-45, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24658680

RESUMEN

In this study we report on the first mass spectrometric (MS) investigation of gangliosides and preliminary assessment of the expression and structure in normal fetal neocortex in early developmental stages: 14th (Neo14) and 16th (Neo16) gestational weeks. Ganglioside analysis was carried out using a hybrid quadrupole time-of-flight (QTOF) MS with direct sample infusion by nanoelectrospray ionization (nanoESI) in the negative ion mode. Under optimized conditions a large number of glycoforms i.e. 75 in Neo14 and 71 in Neo16 mixtures were identified. The ganglioside species were found characterized by a high diversity of the ceramide constitution, an elevated sialylation degree (up to pentasialylated gangliosides-GP1) and sugar cores modified by fucosylation (Fuc) and acetylation (O-Ac). Direct comparison between Neo14 and Neo16 revealed a prominent expression of monosialylated structures in the Neo16 as well as the presence of a larger number of polysialylated species in Neo14 which constitutes a clear marker of rapid development-dependant changes in the sialylation. Also the MS screening results highlighted that presumably O-acetylation process occurs faster than fucosylation. CID MS/MS under variable collision energy applied for the first time for structural analysis of a fucosylated pentasialylated species induced an efficient fragmentation with generation of ions supporting Fuc-GP1d isomer in early stage fetal brain neocortex.


Asunto(s)
Gangliósidos/metabolismo , Neocórtex/embriología , Neocórtex/metabolismo , Espectrometría de Masas en Tándem/métodos , Acetilación , Densitometría/métodos , Gangliósidos/análisis , Edad Gestacional , Humanos , Nanotecnología , Espectrometría de Masa por Ionización de Electrospray/métodos
17.
Amino Acids ; 46(7): 1625-34, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24687149

RESUMEN

Electron transfer dissociation (ETD) has been developed recently as an efficient ion fragmentation technique in mass spectrometry (MS), being presently considered a step forward in proteomics with real perspectives for improvement, upgrade and application. Available also on affordable ion trap mass spectrometers, ETD induces specific N-Cα bond cleavages of the peptide backbone with the preservation of the post-translational modifications and generation of product ions that are diagnostic for the modification site(s). In addition, in the last few years ETD contributed significantly to the development of top-down approaches which enable tandem MS of intact protein ions. The present review, covering the last 5 years highlights concisely the major achievements and the current applications of ETD fragmentation technique in proteomics. An ample part of the review is dedicated to ETD contribution in the elucidation of the most common posttranslational modifications, such as phosphorylation and glycosylation. Further, a brief section is devoted to top-down by ETD method applied to intact proteins. As the last few years have witnessed a major expansion of the microfluidics systems, a few considerations on ETD in combination with chip-based nanoelectrospray (nanoESI) as a platform for high throughput top-down proteomics are also presented.


Asunto(s)
Espectrometría de Masas/métodos , Proteómica/métodos , Secuencia de Aminoácidos , Transporte de Electrón , Glicopéptidos/análisis , Glicopéptidos/metabolismo , Glicosilación , Espectrometría de Masas/instrumentación , Datos de Secuencia Molecular , Fosforilación , Procesamiento Proteico-Postraduccional , Espectrometría de Masas en Tándem
18.
Pharmaceuticals (Basel) ; 15(11)2022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-36355533

RESUMEN

Implementing metallic nanoparticles as research instruments for the transport of therapeutically active compounds remains a fundamentally vital work direction that can still potentially generate novelties in the field of drug formulation development. Gold nanoparticles (GNP) are easily tunable carriers for active phytocompounds like pentacyclic triterpenes. These formulations can boost the bioavailability of a lipophilic structure and, in some instances, can also enhance its therapeutic efficacy. In our work, we proposed a biological in vitro assessment of betulinic acid (BA)-functionalized GNP. BA-GNP were obtained by grafting BA onto previously synthesized citrate-capped GNP through the use of cysteamine as a linker. The nanoformulation was tested in HaCaT human keratinocytes and RPMI-7951 human melanoma cells, revealing selective cytotoxic properties and stronger antiproliferative effects compared to free BA. Further examinations revealed a pro-apoptotic effect, as evidenced by morphological changes in melanoma cells and supported by western blot data showing the downregulation of anti-apoptotic Bcl-2 expression coupled with the upregulation of pro-apoptotic Bax. GNP also significantly inhibited mitochondrial respiration, confirming its mitochondrial-targeted activity.

19.
J Med Life ; 13(2): 195-199, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32742513

RESUMEN

Polyurethane nano- and micro-structures have been studied intensively in the last decade as drug delivery systems for various herbal extracts as well as pure active biological substances. Their biocompatibility, haemocompatibility, safe degradation, and low-cost production are just a few advantages of these materials that were already used in numerous medical applications (catheters, surgical drapes, wound dressing). The primary purposes of this study include obtaining empty polyurethane microstructures and the assessment of their modifications in media with different pH values. A mixture of two aliphatic diisocyanates and an aqueous phase based on a polyether were used during the synthesis process. The size, homogeneity, and surface charge were studied using a Cordouan Technol. Zetasizer, while the pH measurements were conducted with a portable pH Meter Checker®, Hanna Instruments. The results showed the obtaining of an almost homogeneous sample containing microstructures with sizes ranging between 139 and 151 nm, with a pH value of approximately 6.78 and a Zeta potential of 24.6. Expected decreases in microparticles' sizes were observed in all types of media during a 15-days experiment, but the process was accelerated by a low pH when an increase of the Zeta potential value was noticed as well. Our data provide new information about the degradation process of the polyurethane microstructures on the one hand and the drug release rate of these materials when used as drug carriers, on the other hand.


Asunto(s)
Portadores de Fármacos/química , Poliuretanos/química , Concentración de Iones de Hidrógeno , Tamaño de la Partícula , Electricidad Estática
20.
Nanomaterials (Basel) ; 11(1)2020 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-33379150

RESUMEN

THE Herpes simplex viruses (HSV-1, HSV-2) are responsible for a wide variety of conditions, from cutaneous-mucosal to central nervous system (CNS) infections and occasional infections of the visceral organs, some of them with a lethal end. Acyclovir is often used intravenously, orally, or locally to treat herpetic infections but it must be administered with caution to patients with kidney disease and to children of early age. The main objectives of this study were to synthesize and evaluate new polyurethane nanoparticles that might be used as proper transmembrane carriers for acyclovir. Polyurethane particles were obtained by a polyaddition process: a mixture of two aliphatic diisocyanates used as organic phase was added to a mixture of butanediol and polyethylene glycol used as aqueous phase. Two different samples (with and without acyclovir, respectively) were synthesized and characterized by UV-Vis spectra in order to assess the encapsulation efficacy and the release profile, FT-IR, DSC, SEM, and SANS for structural characterization, as well as skin irritation tests. Nearly homogeneous samples with particle sizes between 78 and 91 nm have been prepared and characterized revealing a medium tendency to form clusters and a high resistance to heat up to 300 °C. The release profile of these nanoparticles is characteristic to a drug delivery system with a late discharge of the loaded active agents. Very slight increases in the level of transepidermal water loss and erythema were found in a 15-day evaluation on human skin. The results suggest the synthesis of a non-irritative carrier with a high encapsulation efficacy that can be successfully used for the transmembrane transfer of acyclovir.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA