Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Small ; 20(24): e2309164, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38175832

RESUMEN

Attempts are made to design a system for sustaining the delivery of copper ions into diabetic wounds and induce angiogenesis with minimal dose-dependent cytotoxicity. Here, a dual drug-delivery micro/nanofibrous core-shell system is engineered using polycaprolactone/sodium sulfated alginate-polyvinyl alcohol (PCL/SSA-PVA), as core/shell parts, by emulsion electrospinning technique to optimize sustained delivery of copper oxide nanoparticles (CuO NP). Herein, different concentrations of CuO NP (0.2, 0.4, 0.8, and 1.6%w/w) are loaded into the core part of the core-shell system. The morphological, biomechanical, and biocompatibility properties of the scaffolds are fully determined in vitro and in vivo. The 0.8%w/w CuO NP scaffold reveals the highest level of tube formation in HUVEC cells and also upregulates the pro-angiogenesis genes (VEGFA and bFGF) expression with no cytotoxicity effects. The presence of SSA and its interaction with CuO NP, and also core-shell structure sustain the release of the nanoparticles and provide a non-toxic microenvironment for cell adhesion and tube formation, with no sign of adverse immune response in vivo. The optimized scaffold significantly accelerates diabetic wound healing in a rat model. This study strongly suggests the 0.8%w/w CuO NP-loaded PCL/SSA-PVA as an excellent diabetic wound dressing with significantly improved angiogenesis and wound healing.


Asunto(s)
Cobre , Células Endoteliales de la Vena Umbilical Humana , Nanofibras , Cicatrización de Heridas , Cobre/química , Cicatrización de Heridas/efectos de los fármacos , Animales , Nanofibras/química , Humanos , Emulsiones/química , Neovascularización Fisiológica/efectos de los fármacos , Diabetes Mellitus Experimental/tratamiento farmacológico , Andamios del Tejido/química , Ratas , Nanopartículas/química , Masculino , Ratas Sprague-Dawley , Poliésteres/química , Angiogénesis
2.
Biotechnol Bioeng ; 121(4): 1453-1464, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38234099

RESUMEN

An ideal antibacterial wound dressing with strong antibacterial behavior versus highly drug-resistant bacteria and great wound-healing capacity is still being developed. There is a clinical requirement to progress the current clinical cares that fail to fully restore the skin structure due to post-wound infections. Here, we aim to introduce a novel two-layer wound dressing using decellularized bovine skin (DBS) tissue and antibacterial nanofibers to design a bioactive scaffold with bio-mimicking the native extracellular matrix of both dermis and epidermis. For this purpose, polyvinyl alcohol (PVA)/chitosan (CS) solution was loaded with antibiotics (colistin and meropenem) and electrospun on the surface of the DBS scaffold to fabricate a two-layer antibacterial wound dressing (DBS-PVA/CS/Abs). In detail, the characterization of the fabricated scaffold was conducted using biomechanical, biological, and antibacterial assays. Based on the results, the fabricated scaffold revealed a homogenous three-dimensional microstructure with a connected pore network, a high porosity and swelling ratio, and favorable mechanical properties. In addition, according to the cell culture result, our fabricated two-layer scaffold surface had a good interaction with fibroblast cells and provided an excellent substrate for cell proliferation and attachment. The antibacterial assay revealed a strong antibacterial activity of DBS-PVA/CS/Abs against both standard strain and multidrug-resistant clinical isolates of Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli. Our bilayer antibacterial wound dressing is strongly suggested as an admirable wound dressing for the management of infectious skin injuries and now promises to advance with preclinical and clinical research.


Asunto(s)
Quitosano , Nanofibras , Infección de Heridas , Animales , Bovinos , Antibacterianos/farmacología , Antibacterianos/química , Piel , Cicatrización de Heridas , Quitosano/química , Alcohol Polivinílico/química , Infección de Heridas/tratamiento farmacológico , Nanofibras/química
3.
Artif Organs ; 48(2): 117-129, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37909148

RESUMEN

BACKGROUND: Functionalization of wound dressing is one of the main approaches for promoting wound healing in skin wound management. In this study, our aim is to fabricate a bio-functionalized hydrocolloid wound dressing. METHODS: The extracellular matrix (ECM) was extracted from human placental tissue. A hydrocolloid film was fabricated using Na-CMC, pectin, gelatin, styrene-isoprene-styrene adhesive, glycerol, and 0.5%-2.5% powdered ECM. A polyurethane film and a release liner were used in the hydrocolloid/ECM films. The mechanical, adhesion, swelling rate, and integrity of the films were investigated. Cell proliferation, adhesion, and migration assays, as well as, SEM and FTIR spectroscopy were also conducted. Macroscopic and microscopic evaluations of wound healing process and formation of blood vessels were conducted in mouse animal models. RESULTS: We successfully fabricated a three-layered ECM-functionalized hydrocolloid dressing with a water vapor transmission rate of 371 g/m2 /day and an adhesion peel strength of 176 KPa. Cellular adhesion, proliferation and migration were promoted by ECM. In the animal tests, ECM-functionalized hydrocolloids significantly improved wound closure and re-epithelialization at days 14 and 21. Also, ECM-functionalized hydrocolloids promoted the formation of hair follicles. CONCLUSIONS: Our findings suggest that ECM could enhance the wound healing properties of hydrocolloid wound dressings. This wound dressing could be considered for application in hard-to-heal acute wounds.


Asunto(s)
Matriz Extracelular , Placenta , Embarazo , Humanos , Femenino , Ratones , Animales , Vendas Hidrocoloidales , Animales de Laboratorio , Coloides/química , Estirenos
4.
Cell Tissue Res ; 394(3): 393-421, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37721632

RESUMEN

Men's reproductive health exclusively depends on the appropriate maturation of certain germ cells known as sperm. Certain illnesses, such as Klinefelter syndrome, cryptorchidism, and syndrome of androgen insensitivity or absence of testis maturation in men, resulting in the loss of germ cells and the removal of essential genes on the Y chromosome, can cause non-obstructive azoospermia. According to laboratory research, preserving, proliferating, differentiating, and transplanting spermatogonial stem cells or testicular tissue could be future methods for preserving the fertility of children with cancer and men with azoospermia. Therefore, new advances in stem cell research may lead to promising therapies for treating male infertility. The rate of progression and breakthrough in the area of in vitro spermatogenesis is lower than that of SSC transplantation, but newer methods are also being developed. In this regard, tissue and cell culture, supplements, and 3D scaffolds have opened new horizons in the differentiation of stem cells in vitro, which could improve the outcomes of male infertility. Various 3D methods have been developed to produce cellular aggregates and mimic the organization and function of the testis. The production of an artificial reproductive organ that supports SSCs differentiation will certainly be a main step in male infertility treatment.


Asunto(s)
Azoospermia , Infertilidad Masculina , Niño , Masculino , Humanos , Testículo , Espermatogonias , Semen , Espermatogénesis , Infertilidad Masculina/terapia
5.
Biotechnol Bioeng ; 120(3): 836-851, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36479982

RESUMEN

The liver is one of the vital organs in the body, and the gold standard of treatment for liver function impairment is liver transplantation, which poses many challenges. The specific three-dimensional (3D) structure of liver, which significantly impacts the growth and function of its cells, has made biofabrication with the 3D printing of scaffolds suitable for this approach. In this study, to investigate the effect of scaffold geometry on the performance of HepG2 cells, poly-lactic acid (PLA) polymer was used as the input of the fused deposition modeling (FDM) 3D-printing machine. Samples with simple square and bioinspired hexagonal cross-sectional designs were printed. One percent and 2% of gelatin coating were applied to the 3D printed PLA to improve the wettability and surface properties of the scaffold. Scanning electron microscopy pictures were used to analyze the structural properties of PLA-Gel hybrid scaffolds, energy dispersive spectroscopy to investigate the presence of gelatin, water contact angle measurement for wettability, and weight loss for degradation. In vitro tests were performed by culturing HepG2 cells on the scaffold to evaluate the cell adhesion, viability, cytotoxicity, and specific liver functions. Then, high-precision scaffolds were printed and the presence of gelatin was detected. Also, the effect of geometry on cell function was confirmed in viability, adhesion, and functional tests. The albumin and urea production of the Hexagonal PLA scaffold was about 1.22 ± 0.02-fold higher than the square design in 3 days. This study will hopefully advance our understanding of liver tissue engineering toward a promising perspective for liver regeneration.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Gelatina , Estudios Transversales , Poliésteres/química , Hígado , Impresión Tridimensional
6.
Amino Acids ; 55(8): 955-967, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37314517

RESUMEN

Post-wound infections have remained a serious threat to society and healthcare worldwide. Attempts are still being made to develop an ideal antibacterial wound dressing with high wound-healing potential and strong antibacterial activity against extensively drug-resistant bacteria (XDR). In this study, a biological-based sponge was made from decellularized human placenta (DPS) and then loaded with different concentrations (0, 16 µg/mL, 32 µg/mL, 64 µg/mL) of an antimicrobial peptide (AMP, CM11) to optimize an ideal antibacterial wound dressing. The decellularization of DPS was confirmed by histological evaluations and DNA content assay. The DPS loaded with different contents of antimicrobial peptides (AMPs) showed uniform morphology under a scanning electron microscope (SEM) and cytobiocompatibility for human adipose tissue-derived mesenchymal stem cells. Antibacterial assays indicated that the DPS/AMPs had antibacterial behavior against both standard strain and XDR Acinetobacter baumannii in a dose-dependent manner, as DPS loaded with 64 µg/mL showed the highest bacterial growth inhibition zone and elimination of bacteria under SEM than DPS alone and DPS loaded with 16 µg/mL and 32 µg/mL AMP concentrations. The subcutaneous implantation of all constructs in the animal model demonstrated no sign of acute immune system reaction and graft rejection, indicating in vivo biocompatibility of the scaffolds. Our findings suggest the DPS loaded with 64 µg/mL as an excellent antibacterial skin substitute, and now promises to proceed with pre-clinical and clinical investigations.


Asunto(s)
Péptidos Antimicrobianos , Piel Artificial , Embarazo , Animales , Femenino , Humanos , Placenta , Antibacterianos/farmacología , Antibacterianos/química , Vendajes , Bacterias
7.
Biotechnol Bioeng ; 120(12): 3638-3654, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37668186

RESUMEN

Mesenchymal stem cells and macrophages (MQ) are two very important cells involved in the normal wound healing process. It is well understood that topological cues and mechanical factors can lead to different responses in stem cells and MQ by influencing their shape, cytoskeleton proliferation, migration, and differentiation, which play an essential role in the success or failure of biomaterial implantation and more importantly wound healing. On the other hand, the polarization of MQ from proinflammatory (M1) to prohealing (M2) phenotypes has a critical role in the acceleration of wound healing. In this study, the morphology of different MQ subtypes (M0, M1, and M2) was imprinted on a silicon surface (polydimethylsiloxane [PDMS]) to prepare a nano-topography cell-imprinted substrate with the ability to induce anti-inflammatory effects on the mouse adipose-derived stem cells (ADSCs) and RAW264.7 monocyte cell line (MO). The gene expression profiles and flow cytometry of MQ revealed that the cell shape microstructure promoted the MQ phenotypes according to the specific shape of each pattern. The ELISA results were in agreement with the gene expression profiles. The ADSCs on the patterned PDMS exhibited remarkably different shapes from no-patterned PDMS. The MOs grown on M2 morphological patterns showed a significant increase in expression and section of anti-inflammatory cytokine compared with M0 and M1 patterns. The ADSCs homing in niches heavily deformed the cytoskeletal, which is probably why the gene expression and phenotype unexpectedly changed. In conclusion, wound dressings with M2 cell morphology-induced surfaces are suggested as excellent anti-inflammatory and antiscarring dressings.


Asunto(s)
Macrófagos , Células Madre Mesenquimatosas , Ratones , Animales , Macrófagos/metabolismo , Citocinas/metabolismo , Cicatrización de Heridas , Células Madre Mesenquimatosas/metabolismo , Antiinflamatorios/farmacología
8.
Artif Organs ; 47(1): 47-61, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36029128

RESUMEN

BACKGROUND: Several factors like three-dimensional microstructure, growth factors, cytokines, cell-cell communication, and coculture with functional cells can affect the stem cells behavior and differentiation. The purpose of this study was to investigate the potential of decellularized placental sponge as adipose-derived mesenchymal stem cells (AD-MSCs) and macrophage coculture systems, and guiding the osteogenic differentiation of stem cells. METHODS: The decellularized placental sponge (DPS) was fabricated, and its mechanical characteristics were evaluated using degradation assay, swelling rate, and pore size determination. Its structure was also investigated using hematoxylin and eosin staining and scanning electron microscopy. Mouse peritoneal macrophages and AD-MSCs were isolated and characterized. The differentiation potential of AD-MSCs co-cultured with macrophages was evaluated by RT-qPCR of osteogenic genes on the surface of DPS. The in vivo biocompatibility of DPS was determined by subcutaneous implantation of scaffold and histological evaluations of the implanted site. RESULTS: The DPS had 67% porosity with an average pore size of 238 µm. The in vitro degradation assay showed around 25% weight loss during 30 days in PBS. The swelling rate was around 50% during 72 h. The coculture of AD-MSCs/macrophages on the DPS showed a significant upregulation of four differentiation osteogenic lineage genes in AD-MSCs on days 14 and 21 and a significantly higher mineralization rate than the groups without DPS. Subcutaneous implantation of DPS showed in vivo biocompatibility of scaffold during 28 days follow-up. CONCLUSIONS: Our findings suggest the decellularized placental sponge as an excellent bone substitute providing a naturally derived matrix substrate with biostructure close to the natural bone that guided differentiation of stem cells toward bone cells and a promising coculture substrate for crosstalk of macrophage and mesenchymal stem cells in vitro.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Embarazo , Femenino , Ratones , Animales , Osteogénesis/fisiología , Técnicas de Cocultivo , Andamios del Tejido/química , Placenta , Diferenciación Celular/fisiología , Macrófagos/metabolismo , Células Cultivadas
9.
Artif Organs ; 46(3): 375-386, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35023156

RESUMEN

The placenta, as a large discarded tissue and rich in extracellular matrix (ECM), is an excellent candidate for biological scaffolds in reconstructive medicine. Considering the importance of ECM structure in cell fate, the aim of this study was to achieve human placenta decellularization protocol that preserve the structure of scaffolds. Thus, human placenta was decellularized by four protocols and decellularization efficacy was compared by hematoxylin and eosin (H&E), 4',6-diamidino-2-phenylindole (DAPI) staining, and DNA measurement. Decellularized placenta structure preservation was assessed by Masson's trichrome staining, scanning electron microscopy (SEM), and immunofluorescence (IF) for collagen I, IV, and fibronectin. Finally, liquid displacement measured scaffolds' porosity. After culturing menstrual blood-derived stem cells (MenSCs) on placenta scaffolds, cell adhesion was investigated by SEM imaging, and cell viability and proliferation were assessed by MTT assay. According to H&E and DAPI staining, only protocols 1 and 3 could completely remove cells from the scaffolds. DNA measurements confirmed a significant reduction in the genetic material of decellularized scaffolds compared to native placenta. According to Masson's trichrome, IF, and SEM imaging, scaffold structure is better preserved in P3 than P1 protocol. Liquid displacement showed higher porosity of P3 scaffold than P1. SEM imaging confirmed cells adhesion to the decellularized placenta, and the attached cells showed good viability and maintained their proliferative capacity, indicating the suitability of the scaffolds for cell growth. Results introduced an optimized protocol for placenta decellularization that preserves the scaffold structure and supports cell adhesion and proliferation.


Asunto(s)
Separación Celular/métodos , Placenta/citología , Ingeniería de Tejidos/métodos , ADN/análisis , Femenino , Humanos , Placenta/ultraestructura , Embarazo , Andamios del Tejido
10.
Artif Organs ; 46(6): 1040-1054, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35006608

RESUMEN

BACKGROUND: Synthetic tissue engineering scaffolds has poor biocompatiblity with very low angiogenic properties. Conditioning the scaffolds with functional groups, coating with biological components, especially extracellular matrix (ECM), is an excellent strategy for improving their biomechanical and biological properties. METHODS: In the current study, a composite of polycaprolactone and gelatin (PCL/Gel) was electrospun in the ratio of 70/30 and surface modified with 1% gelatin-coating (G-PCL/Gel) or plasma treatment (P-PCL/Gel). The surface modification was determined by SEM and ATR-FTIR spectroscopy, respectively. The scaffolds were cultured with fibroblast 3T3, then decellularized during freeze-thawing process to fabricate a fibroblast ECM-conditioned PCL/Gel scaffold (FC-PCL/Gel). The swelling and degaradtion as well as in vitro and in vivo biocompatibility and angiogenic properties of the scaffolds were evaluated. RESULTS: The structure of the surface-modified G-PCL/Gel and P-PCL/Gel were unique and not changed compared with the PCL/Gel scaffolds. ATR-FTIR analysis admitted the formation of oxygen-containing groups, hydroxyl and carboxyl, on the surface of the P-PCL/Gel scaffold. The SEM micrographs and DAPI staining confirmed the cell attachment and the ECM deposition on the platform and successful removal of the cells after decellularization. P-PCL/Gel showed better cell attachment, ECM secretion and deposition after decellularization compared with G-PCL/Gel. The FC-PCL/Gel was considered as an optimized scaffold for further assays in this study. The FC-PCL/Gel showed increased hydrophilic behavior and cytobiocompatibility compared with P-PCL/Gel. The ECM on the FC-PCL/Gel scaffold showed a gradual degradation during 30 days of degradation time, as a small amount of ECM remained over the FC-PCL/Gel scaffold at day 30. The FC-PCL/Gel showed significant biocompatibility and improved angiogenic property compared with P-PCL/Gel when subcutaneously implanted in a mouse animal model for 7 and 28 days. CONCLUSIONS: Our findings suggest FC-PCL/Gel as an excellent biomimetic construct with high angiogenic properties. This bioengineered construct can serve as a possible application in our future pre-clinical and clinical studies for skin regeneration.


Asunto(s)
Gelatina , Ingeniería de Tejidos , Animales , Fibroblastos , Gelatina/química , Ratones , Poliésteres/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
11.
BMC Biotechnol ; 21(1): 8, 2021 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-33472624

RESUMEN

BACKGROUND: Nowadays, the number of cancer survivors is significantly increasing as a result of efficient chemo/radio therapeutic treatments. Female cancer survivors may suffer from decreased fertility. In this regard, different fertility preservation techniques were developed. Artificial ovary is one of these methods suggested by several scientific groups. Decellularized ovarian cortex has been introduced as a scaffold in the field of human fertility preservation. This study was carried out to compare decellularization of the ovarian scaffold by various protocols and evaluate the follicle survival in extracellular matrix (ECM)-alginate scaffold. RESULTS: The micrographs of H&E and DAPI staining confirmed successful decellularization of the ovarian cortex in all experimental groups, but residual DNA content in SDS-Triton group was significantly higher than other groups (P < 0.05). SEM images demonstrated that complex fiber network and porosity structure were maintained in all groups. Furthermore, elastin and collagen fibers were observed in all groups after decellularization process. MTT test revealed higher cytobiocompatibility of the SDS-Triton-Ammonium and SDS-Triton decellularized scaffolds compared with SDS groups. Compared to the transferred follicles into the sodium alginate (81%), 85.9% of the transferred follicles into the decellularized scaffold were viable after 7 days of cultivation (P = 0.04). CONCLUSION: Although all the decellularization procedures was effective in removal of cells from ovarian cortex, SDS-Triton-Ammonium group showed less residual DNA content with higher cytobiocompatibility for follicles when compared with other groups. In addition, the scaffold made from ovarian tissues decellularized using SDS-Triton-Ammonium and sodium alginate is suggested as a potential 3D substrate for in vitro culture of follicles for fertility preservation.


Asunto(s)
Alginatos/metabolismo , Matriz Extracelular/química , Folículo Ovárico/citología , Ovario/citología , Ingeniería de Tejidos/métodos , Andamios del Tejido , Adulto , Animales , Materiales Biocompatibles , Bovinos , Femenino , Preservación de la Fertilidad , Humanos , Hidrogeles , Ratones , Persona de Mediana Edad , Folículo Ovárico/crecimiento & desarrollo
12.
Small ; 17(30): e2006335, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33887108

RESUMEN

Hydrogel biomaterials have many favorable characteristics including tuneable mechanical behavior, cytocompatibility, optical properties suitable for regeneration and restoration of the damaged cornea tissue. The cornea is a tissue susceptible to various injuries and traumas with a complicated healing cascade, in which conserving its transparency and integrity is critical. Accordingly, the hydrogels' known properties along with the stimulation of nerve and cell regeneration make them ideal scaffold for corneal tissue engineering. Hydrogels have been used extensively in clinical applications for the repair and replacement of diseased organs. The development and optimizing of novel hydrogels to repair/replace corneal injuries have been the main focus of researches within the last decade. This research aims to critically review in vitro, preclinical, as well as clinical trial studies related to corneal wound healing using hydrogels in the past 10 years, as this is considered as an emerging technology for corneal treatment. Several unique modifications of hydrogels with smart behaviors have undergone early phase clinical trials and showed promising outcomes. Financially, this considers a multibillion dollars industry and with huge interest from medical devices as well as pharmaceutical industries with several products may emerge within the next five years.


Asunto(s)
Córnea , Hidrogeles , Materiales Biocompatibles , Humanos , Ingeniería de Tejidos , Cicatrización de Heridas
13.
J Mater Sci Mater Med ; 32(9): 114, 2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34455501

RESUMEN

Wound infections are still problematic in many cases and demand new alternatives for current treatment strategies. In recent years, biomaterials-based wound dressings have received much attention due to their potentials and many studies have been performed based on them. Accordingly, in this study, we fabricated and optimized an antibacterial chitosan/silk fibroin (CS/SF) electrospun nanofiber bilayer containing different concentrations of a cationic antimicrobial peptide (AMP) for wound dressing applications. The fabricated CS/SF nanofiber was fully characterized and compared to the electrospun silk fibroin and electrospun chitosan alone in vitro. Then, the release rate of different concentrations of peptide (16, 32, and 64 µg/ml) from peptide-loaded CS/SF nanofiber was investigated. Finally, based on cytotoxic activity, the antibacterial activity of scaffolds containing 16 and 32 µg/ml of the peptide was evaluated against standard and multi-drug resistant strains of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa isolated from burn patients. The peptide-loaded CS/SF nanofiber displayed appropriate mechanical properties, high water uptake, suitable biodegradation rate, a controlled release without cytotoxicity on Hu02 human foreskin fibroblast cells at the 16 and 32 µg/ml concentrations of peptide. The optimized CS/SF containing 32 µg/ml peptide showed strong antibacterial activity against all experimental strains from standard to resistance. The results showed that the fabricated antimicrobial nanofiber has the potential to be applied as a wound dressing for infected wound healing, although further studies are needed in vivo.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/administración & dosificación , Vendajes , Quitosano/química , Portadores de Fármacos/síntesis química , Fibroínas/química , Animales , Antibacterianos/administración & dosificación , Antibacterianos/química , Antibacterianos/farmacocinética , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacocinética , Líquidos Corporales/química , Bombyx , Células Cultivadas , Quitosano/farmacología , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Galvanoplastia , Fibroínas/farmacología , Humanos , Ensayo de Materiales , Pruebas de Sensibilidad Microbiana , Microtecnología , Nanofibras/química , Nanofibras/uso terapéutico , Cicatrización de Heridas/efectos de los fármacos , Infección de Heridas/prevención & control
14.
J Mater Sci Mater Med ; 32(5): 47, 2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33891169

RESUMEN

Decellularized scaffolds have been found to be excellent platforms for tissue engineering applications. The attempts are still being made to optimize a decellularization protocol with successful removal of the cells with minimal damages to extracellular matrix components. We examined twelve decellularization procedures using different concentrations of Sodium dodecyl sulfate and Triton X-100 (alone or in combination), and incubation time points of 15 or 30 min. Then, the potential of the decellularized scaffold as a three-dimensional substrate for colony formation capacity of mouse spermatogonial stem cells was determined. The morphological, degradation, biocompatibility, and swelling properties of the samples were fully characterized. The 0.5%/30 SDS/Triton showed optimal decellularization with minimal negative effects on ECM (P ≤ 0.05). The swelling ratios increased with the increase of SDS and Triton concentration and incubation time. Only 0.5%/15 and 30 SDS showed a significant decrease in the SSCs viability compared with other groups (P < 0.05). The SSCs colony formation was clearly observed under SEM and H&E stained slides. The cells infiltrated into the subcutaneously implanted scaffold at days 7 and 30 post-implantation with no sign of graft rejection. Our data suggest the %0.5/30 SDS/Triton as an excellent platform for tissue engineering and reproductive biology applications.


Asunto(s)
Células Madre Germinales Adultas/fisiología , Movimiento Celular/fisiología , Matriz Extracelular/química , Placenta/efectos de los fármacos , Andamios del Tejido , Animales , Animales Recién Nacidos , Femenino , Humanos , Ratones , Octoxinol/química , Embarazo , Dodecil Sulfato de Sodio/química , Ingeniería de Tejidos/métodos
15.
Crit Rev Biotechnol ; 40(8): 1098-1112, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32772758

RESUMEN

Exosomes are the most researched extracellular vesicles. In many biological, physiological, and pathological studies, they have been identified as suitable candidates for treatment and diagnosis of diseases by acting as the carriers of both drugs and genes. Considerable success has been achieved regarding the use of exosomes for tissue regeneration, cancer diagnosis, and targeted drug/gene delivery to specific tissues. While major progress has been made in exosome extraction and purification, extraction of large quantities of exosomes is still a major challenge. This issue limits the scope of both exosome-based research and therapeutic development. In this review, we have aimed to summarize experimental studies focused at increasing the number of exosomes. Biotechnological studies aimed at identifying the pathways of exosome biogenesis to manipulate some genes in order to increase the production of exosomes. Generally, two major strategies are employed to increase the production of exosomes. First, oogenesis pathways are genetically manipulated to overexpress activator genes of exosome biogenesis and downregulate the genes involved in exosome recycling pathways. Second, manipulation of the cell culture medium, treatment with specific drugs, and limiting certain conditions can force the cell to produce more exosomes. In this study, we have reviewed and categorized these strategies. It is hoped that the information presented in this review will provide a better understanding for expanding biotechnological approaches in exosome-based therapeutic development.


Asunto(s)
Biotecnología , Exosomas/metabolismo , Exosomas/genética , Ingeniería Genética , Ingeniería Metabólica , Redes y Vías Metabólicas , Proteómica
16.
Cell Mol Life Sci ; 76(14): 2697-2718, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31030227

RESUMEN

The field of tissue engineering (TE) experiences its most exciting time in the current decade. Recent progresses in TE have made it able to translate into clinical applications. To regenerate damaged tissues, TE uses biomaterial scaffolds to prepare a suitable backbone for tissue regeneration. It is well proven that the cell-biomaterial crosstalk impacts tremendously on cell biological activities such as differentiation, proliferation, migration, and others. Clarification of exact biological effects and mechanisms of a certain material on various cell types promises to have a profound impact on clinical applications of TE. Chitosan (CS) is one of the most commonly used biomaterials with many promising characteristics such as biocompatibility, antibacterial activity, biodegradability, and others. In this review, we discuss crosstalk between CS and various cell types to provide a roadmap for more effective applications of this polymer for future uses in tissue engineering and regenerative medicine.


Asunto(s)
Materiales Biocompatibles/metabolismo , Quitosano/metabolismo , Medicina Regenerativa , Ingeniería de Tejidos/métodos , Andamios del Tejido , Animales , Humanos , Transducción de Señal
17.
J Cell Physiol ; 234(12): 23763-23773, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31173364

RESUMEN

Olfactory ectomesenchymal stem cells (OE-MSCs) possess the immunosuppressive activity and regeneration capacity and hold a lot of promises for neurodegenerative disorders treatment. This study aimed to determine OE-MSCs which are able to augment and differentiate into functional neurons and regenerate the CNS and also examine whether the implantation of OE-MSCs in the pars compacta of the substantia nigra (SNpc) can improve Parkinson's symptoms in a rat model-induced with 6-hydroxydopamine. We isolated OE-MSCs from lamina propria in olfactory mucosa and characterized them using flow cytometry and immunocytochemistry. The therapeutic potential of OE-MSCs was evaluated by the transplantation of isolated cells using a rat model of acute SN injury as a Parkinson's disease. Significant behavioral improvement in Parkinsonian rats was elicited by the OE-MSCs. The results demonstrate that the expression of PAX2, PAX5, PITX3, dopamine transporter, and tyrosine hydroxylase was increased by OE-MSCs compared to the control group which is analyzed with real-time polymerase chain reaction technique and immunohistochemical staining. In the outcome, the transplantation of 1,1'-dioctadecyl-3,3,3'3'-tetramethyl indocarbocyanine perchlorate labeled OE-MSCs that were fully differentiated to dopaminergic neurons contribute to a substantial improvement in patients with Parkinson's. Together, our results provide that using OE-MSCs in neurodegenerative disorders might lead to better neural regeneration.


Asunto(s)
Neuronas Dopaminérgicas/citología , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Mucosa Olfatoria/citología , Enfermedad de Parkinson/terapia , Animales , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Células Cultivadas , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/biosíntesis , Proteínas de Homeodominio/biosíntesis , Masculino , Células Madre Mesenquimatosas/metabolismo , Factor de Transcripción PAX2/biosíntesis , Factor de Transcripción PAX5/biosíntesis , Ratas , Ratas Wistar , Factores de Transcripción/biosíntesis , Tirosina 3-Monooxigenasa/biosíntesis
18.
J Cell Biochem ; 120(8): 12508-12518, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30977186

RESUMEN

In this study, we present an electrospun gelatin (EG) scaffold to mimic the extracellular matrix of the testis. The EG scaffold was synthesized by electrospinning and crosslinked with glutaraldehyde vapor to decrease its water solubility and degradation rate. The scanning electron microscope micrographs showed the homogenous morphology of randomly aligned gelatin fibers. The average diameter of gelatin fibers before and after crosslinking was approximately 180 and 220 nm, respectively. Modulus, tensile strength, and elongation at break values were as 161.8 ± 24.4 MPa, 4.21 ± 0.54 MPa, and 7.06 ± 2.12 MPa, respectively. The crosslinked EG showed 75.2% ± 4.5% weight loss after 14 days with no changes in the pH value of degradation solution. Cytobiocompatibility of the EG for sertoli cells and embryonic stem cells (ESCs) was determined in vitro. Sertoli cells were isolated from mouse testis and characterized by immunostaining and flow cytometry. The effects of EG on proliferation and attachment of both sertoli cells and ESCs were examined. The EG scaffolds exhibited no cytotoxicity for sertoli and ESCs. Both sertoli and ESCs were well attached and grown on EG. Coculture of sertoli and ESCs on EG showed better ESCs adhesion compared with ESCs alone. Our findings indicate the potential of EG as a substrate for proliferation, adhesion, and coculture of sertoli and ESCs and may be considered as a promising engineered microenvironment for in vitro coculture system with the aim of guiding stem cells differentiation toward sperm-producing cells.


Asunto(s)
Técnicas de Cocultivo/métodos , Células Madre Embrionarias/fisiología , Gelatina , Células de Sertoli/fisiología , Andamios del Tejido , Animales , Proliferación Celular , Matriz Extracelular , Masculino , Ratones , Testículo
19.
IUBMB Life ; 71(11): 1672-1684, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31322822

RESUMEN

Breast cancer (BC), as a heterogeneous disease, is considered as one of the most common malignancies in women worldwide. The resistance of BC cells to therapeutic agents has remained a big challenge in the treatment of BC patients. Some factors such as cytokines, exosomes, and soluble receptors were recognized as crucial agents involved in the development of drug resistance. However, the exact mechanisms underlying the drug resistance is still unknown. There is growing evidence to support the emerging roles of exosomes, especially exosomal miRNAs, in tumor initiation, angiogenesis, proliferation, migration, invasion, metastasis, and drug resistance. Therefore, identification of BC-specific exosomal miRNAs and their underlying mechanisms would be helpful to define sensitivity to therapeutic drugs and establish an appropriate therapeutic strategy. This review focuses mainly on the roles of exosomal miRNAs and their associated mechanisms in the resistance of BC cells to therapeutic agents, as well as critically examines the potential of these macromolecules as a treatment biomarker in BC patients.


Asunto(s)
Antineoplásicos/farmacología , Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Resistencia a Antineoplásicos/genética , Exosomas/genética , MicroARNs/genética , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Femenino , Humanos
20.
Cell Biol Int ; 43(12): 1379-1392, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30811084

RESUMEN

The mechanical property of bone tissue scaffolds is one of the most important aspects in bone tissue engineering that has remained problematic. In our previous study, we fabricated a three-dimensional scaffold from nano-hydroxyapatite/gelatin (nHA/Gel) and investigated its efficiency in promoting bone regeneration both in vitro and in vivo. In the present study, the effect of adding silicon carbide (SiC) on the mechanical and biological behaviors of the nHA/Gel/SiC and bone regeneration in vivo were determined. nHA and SiC were synthesized and characterized by the X-ray diffraction pattern and transmission electron microscope image. Layer solvent casting, freeze drying, and lamination techniques were applied to prepare these scaffolds. Then, the biocompatibility and cell adhesion behavior of the synthesized nHA/Gel/SiC scaffolds were investigated. For in vivo studies, rats were categorized into three groups: blank defect, blank scaffold, and rat bone marrow mesenchymal stem cells (rBM-MSCs)/scaffold. After 1, 4, and 12 weeks post-injury, the rats were sacrificed and the calvaria were harvested. Sections with a thickness of 5 µm thickness were prepared and stained with hematoxylin-eosin and Masson's Trichrome, and immunohistochemistry was performed. Our results showed that SiC effectively increased the mechanical properties of the nHA/Gel/SiC scaffold. No significant differences were observed in biocompatibility, cell adhesion, and cytotoxicity of the nHA/Gel/SiC in comparison with the nHA/Gel nanocomposite. Based on histological and immunohistochemical studies, both osteogenesis and collagenization were significantly higher in the rBM-MSCs/scaffold group, quantitatively and qualitatively. The present study strongly suggests the potential of SiC as an alternative strategy to improve the mechanical and biological properties of bone tissue engineering scaffolds, and shows that the pre-seeded nHA/Gel/SiC scaffold with rBM-MSCs improves osteogenesis in the engineered bone implant.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA