Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biol Proced Online ; 26(1): 20, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926669

RESUMEN

Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne virus, and zoonosis, and affects large regions of Asia, Southwestern and Southeastern Europe, and Africa. CCHFV can produce symptoms, including no specific clinical symptoms, mild to severe clinical symptoms, or deadly infections. Virus isolation attempts, antigen-capture enzyme-linked immunosorbent assay (ELISA), and reverse transcription polymerase chain reaction (RT-PCR) are all possible diagnostic tests for CCHFV. Furthermore, an efficient, quick, and cheap technology, including biosensors, must be designed and developed to detect CCHFV. The goal of this article is to offer an overview of modern laboratory tests available as well as other innovative detection methods such as biosensors for CCHFV, as well as the benefits and limits of the assays. Furthermore, confirmed cases of CCHF are managed with symptomatic assistance and general supportive care. This study examined the various treatment modalities, as well as their respective limitations and developments, including immunotherapy and antivirals. Recent biotechnology advancements and the availability of suitable animal models have accelerated the development of CCHF vaccines by a substantial margin. We examined a range of potential vaccines for CCHF in this research, comprising nucleic acid, viral particles, inactivated, and multi-epitope vaccines, as well as the present obstacles and developments in this field. Thus, the purpose of this review is to present a comprehensive summary of the endeavors dedicated to advancing various diagnostic, therapeutic, and preventive strategies for CCHF infection in anticipation of forthcoming hazards.

2.
Virol J ; 21(1): 124, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822328

RESUMEN

Cervical cancer (CC) and other malignant malignancies are acknowledged to be primarily caused by persistent human papillomavirus (HPV) infection. Historically, vaccinations against viruses that produce neutralizing antibodies unique to the virus have been an affordable way to manage viral diseases. CC risk is decreased, but not eliminated, by HPV vaccinations. Since vaccinations have been made available globally, almost 90% of HPV infections have been successfully avoided. On the lesions and diseases that are already present, however, no discernible treatment benefit has been shown. As a result, therapeutic vaccines that elicit immune responses mediated by cells are necessary for the treatment of established infections and cancers. mRNA vaccines possess remarkable potential in combating viral diseases and malignancy as a result of their superior industrial production, safety, and efficacy. Furthermore, considering the expeditiousness of production, the mRNA vaccine exhibits promise as a therapeutic approach targeting HPV. Given that the HPV-encoded early proteins, including oncoproteins E6 and E7, are consistently present in HPV-related cancers and pre-cancerous lesions and have crucial functions in the progression and persistence of HPV-related diseases, they serve as ideal targets for therapeutic HPV vaccines. The action mechanism of HPV and HPV-related cancer mRNA vaccines, their recent advancements in clinical trials, and the potential for their therapeutic applications are highlighted in this study, which also offers a quick summary of the present state of mRNA vaccines. Lastly, we highlight a few difficulties with mRNA HPV vaccination clinical practice and provide our thoughts on further advancements in this quickly changing sector. It is expected that mRNA vaccines will soon be produced quickly for clinical HPV prevention and treatment.


Asunto(s)
Infecciones por Papillomavirus , Vacunas contra Papillomavirus , Neoplasias del Cuello Uterino , Vacunas de ARNm , Humanos , Infecciones por Papillomavirus/prevención & control , Infecciones por Papillomavirus/virología , Infecciones por Papillomavirus/inmunología , Vacunas contra Papillomavirus/inmunología , Vacunas contra Papillomavirus/administración & dosificación , Neoplasias del Cuello Uterino/prevención & control , Neoplasias del Cuello Uterino/virología , Neoplasias del Cuello Uterino/terapia , Femenino , Papillomaviridae/inmunología , Papillomaviridae/genética , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/administración & dosificación , Proteínas Oncogénicas Virales/inmunología , Proteínas Oncogénicas Virales/genética , Virus del Papiloma Humano
3.
Virol J ; 21(1): 17, 2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216938

RESUMEN

Primary liver cancer, which is scientifically referred to as hepatocellular carcinoma (HCC), is a significant concern in the field of global health. It has been demonstrated that conventional chemotherapy, chemo-hormonal therapy, and conformal radiotherapy are ineffective against HCC. New therapeutic approaches are thus urgently required. Identifying single or multiple mutations in genes associated with invasion, metastasis, apoptosis, and growth regulation has resulted in a more comprehensive comprehension of the molecular genetic underpinnings of malignant transformation, tumor advancement, and host interaction. This enhanced comprehension has notably propelled the development of novel therapeutic agents. Therefore, gene therapy (GT) holds great promise for addressing the urgent need for innovative treatments in HCC. However, the complexity of HCC demands precise and effective therapeutic approaches. The adeno-associated virus (AAV) distinctive life cycle and ability to persistently infect dividing and nondividing cells have rendered it an alluring vector. Another appealing characteristic of the wild-type virus is its evident absence of pathogenicity. As a result, AAV, a vector that lacks an envelope and can be modified to transport DNA to specific cells, has garnered considerable interest in the scientific community, particularly in experimental therapeutic strategies that are still in the clinical stage. AAV vectors emerge as promising tools for HCC therapy due to their non-immunogenic nature, efficient cell entry, and prolonged gene expression. While AAV-mediated GT demonstrates promise across diverse diseases, the current absence of ongoing clinical trials targeting HCC underscores untapped potential in this context. Furthermore, gene transfer through hepatic AAV vectors is frequently facilitated by GT research, which has been propelled by several congenital anomalies affecting the liver. Notwithstanding the enthusiasm associated with this notion, recent discoveries that expose the integration of the AAV vector genome at double-strand breaks give rise to apprehensions regarding their enduring safety and effectiveness. This review explores the potential of AAV vectors as versatile tools for targeted GT in HCC. In summation, we encapsulate the multifaceted exploration of AAV vectors in HCC GT, underlining their transformative potential within the landscape of oncology and human health.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Dependovirus/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Vectores Genéticos/genética , Terapia Genética/métodos
4.
J Nanobiotechnology ; 22(1): 86, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429829

RESUMEN

The human monkeypox virus (Mpox) is classified as a member of the Poxviridae family and belongs to the Orthopoxvirus genus. Mpox possesses double-stranded DNA, and there are two known genetic clades: those originating in West Africa and the Congo Basin, commonly known as Central African clades. Mpox may be treated with either the vaccinia vaccination or the therapeutics. Modifying the smallpox vaccine for treating and preventing Mpox has shown to be beneficial because of the strong link between smallpox and Mpox viruses and their categorization in the same family. Cross-protection against Mpox is effective with two Food and Drug Administration (FDA)-approved smallpox vaccines (ACAM2000 and JYNNEOSTM). However, ACAM2000 has the potential for significant adverse effects, such as cardiac issues, whereas JYNNEOS has a lower risk profile. Moreover, Mpox has managed to resurface, although with modified characteristics, due to the discontinuation and cessation of the smallpox vaccine for 40 years. The safety and efficacy of the two leading mRNA vaccines against SARS-CoV-2 and its many variants have been shown in clinical trials and subsequent data analysis. This first mRNA treatment model involves injecting patients with messenger RNA to produce target proteins and elicit an immunological response. High potency, the possibility of safe administration, low-cost manufacture, and quick development is just a few of the benefits of RNA-based vaccines that pave the way for a viable alternative to conventional vaccines. When protecting against Mpox infection, mRNA vaccines are pretty efficient and may one day replace the present whole-virus vaccines. Therefore, the purpose of this article is to provide a synopsis of the ongoing research, development, and testing of an mRNA vaccine against Mpox.


Asunto(s)
Mpox , Vacuna contra Viruela , Viruela , Estados Unidos , Humanos , Vacunas de ARNm , Vacunas contra la COVID-19 , Mpox/prevención & control , Antígenos Virales
5.
Microb Pathog ; 175: 105980, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36642287

RESUMEN

A prevalent sexually transmitted infection, the human papillomavirus (HPV) is typically obtained just after the first sexual activity. The majority of HPV infections are asymptomatic and temporary. Cervical, anal, penile, vaginal, vulvar, and oropharyngeal cancers can occur due to recurrent infections with high-risk (hr)-HPV strains, generally decades later. Infections with HPV are significantly associated with reproductive function abnormalities. Per recent research, HPV infections may result in male infertility by reducing sperm motility. The hr-HPV infection was a risk factor for miscarriage, and the indiscriminate HPV genotype increased the probability of premature labor unexpectedly. Women's endometrial trophoblastic cell implantation is decreased by HPV. Gardnerella vaginalis (GV), an anaerobic bacterium that is a component of the natural vaginal flora, can be associated with bacterial vaginosis (BV) when it starts to overgrow and emerge as the dominant species. Reduced Lactobacillus species abundance and GV are linked to female infertility. Data from in vitro studies suggests that sialidase produced by GV may facilitate the entry and growth of papilloma and other sexually transmitted viruses. Also, based on some studies conducted in the past, it can be said that GV and BV are associated with the development of uterine cancer. However, there is still not enough information about the exact mechanism of GV and HPV in causing infertility, which requires more research.


Asunto(s)
Coinfección , Infertilidad , Infecciones por Papillomavirus , Vaginosis Bacteriana , Femenino , Masculino , Humanos , Gardnerella vaginalis , Infecciones por Papillomavirus/complicaciones , Virus del Papiloma Humano , Composición de Base , ARN Ribosómico 16S , Filogenia , Análisis de Secuencia de ADN , Motilidad Espermática , Vaginosis Bacteriana/complicaciones , Vaginosis Bacteriana/microbiología , Vagina/microbiología
6.
Microb Pathog ; 180: 106156, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37201635

RESUMEN

The monkeypox virus (MPOX) is an uncommon zoonotic illness brought on by an orthopoxvirus (OPXV). MPOX can occur with symptoms similar to smallpox. Since April 25, 2023, 110 nations have reported 87,113 confirmed cases and 111 fatalities. Moreover, the outspread prevalence of MPOX in Africa and a current outbreak of MPOX in the U.S. have made it clear that naturally occurring zoonotic OPXV infections remain a public health concern. Existing vaccines, though they provide cross-protection to MPOX, are not specific for the causative virus, and their effectiveness in the light of the current multi-country outbreak is still to be verified. Furthermore, as a sequel of the eradication and cessation of smallpox vaccination for four decades, MPOX found a possibility to re-emerge, but with distinct characteristics. The World Health Organization (WHO) suggested that nations use affordable MPOX vaccines within a framework of coordinated clinical effectiveness and safety evaluations. Vaccines administered in the smallpox control program and conferred immunity against MPOX. Currently, vaccines approved by WHO for use against MPOX are replicating (ACAM2000), low replicating (LC16m8), and non-replicating (MVA-BN). Although vaccines are accessible, investigations have demonstrated that smallpox vaccination is approximately 85% efficient in inhibiting MPOX. In addition, developing new vaccine methods against MPOX can help prevent this infection. To recognize the most efficient vaccine, it is essential to assess effects, including reactogenicity, safety, cytotoxicity effect, and vaccine-associated side effects, especially for high-risk and vulnerable people. Recently, several orthopoxvirus vaccines have been produced and are being evaluated. Hence, this review aims to provide an overview of the efforts dedicated to several types of vaccine candidates with different strategies for MPOX, including inactivated, live-attenuated, virus-like particles (VLPs), recombinant protein, nucleic acid, and nanoparticle-based vaccines, which are being developed and launched.


Asunto(s)
Mpox , Viruela , Humanos , Mpox/epidemiología , Mpox/prevención & control , Viruela/prevención & control , Virus Vaccinia , Vacunación , Desarrollo de Vacunas
7.
Microb Pathog ; 179: 106096, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37011734

RESUMEN

Cholesterol plays critical functions in arranging the biophysical attributes of proteins and lipids in the plasma membrane. For various viruses, an association with cholesterol for virus entrance and/or morphogenesis has been demonstrated. Therefore, the lipid metabolic pathways and the combination of membranes could be targeted to selectively suppress the virus replication steps as a basis for antiviral treatment. U18666A is a cationic amphiphilic drug (CAD) that affects intracellular transport and cholesterol production. A robust tool for investigating lysosomal cholesterol transfer and Ebola virus infection is an androstenolone derived termed U18666A that suppresses three enzymes in the cholesterol biosynthesis mechanism. In addition, U18666A inhibited low-density lipoprotein (LDL)-induced downregulation of LDL receptor and triggered lysosomal aggregation of cholesterol. According to reports, U18666A inhibits the reproduction of baculoviruses, filoviruses, hepatitis, coronaviruses, pseudorabies, HIV, influenza, and flaviviruses, as well as chikungunya and flaviviruses. U18666A-treated viral infections may act as a novel in vitro model system to elucidate the cholesterol mechanism of several viral infections. In this article, we discuss the mechanism and function of U18666A as a potent tool for studying cholesterol mechanisms in various viral infections.


Asunto(s)
Anticolesterolemiantes , Fiebre Hemorrágica Ebola , Animales , Humanos , Antivirales/farmacología , Colesterol , Anticolesterolemiantes/farmacología
8.
Microb Pathog ; 176: 105995, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36681203

RESUMEN

Despite the availability of an effective hepatitis B virus (HBV) vaccine and universal immunization schedules, HBV has remained a health problem in various stages such as occult hepatitis B infection (OBI), chronic hepatitis B (CHB), and hepatocellular carcinoma (HCC), which is considered one of the possible phases during chronic HBV infection. OBI is defined as the persistence of HBV genomes in hepatocytes of patients with a negative HBV surface antigen (HBsAg) test and detectable or undetectable HBV DNA in the blood. OBI is occasionally associated with infection caused by mutant viruses that produce a modified HBsAg that is undetected by diagnostic procedures or with replication-defective variations. Many aspects of HBV (OBI more than any other stage) including prevalence, pathobiology, and clinical implications has remained controversial. According to a growing body of research, non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have been linked to the development and progression of a number of illnesses, including viral infectious disorders. Despite a shortage of knowledge regarding the expression and biological activities of lncRNAs and miRNAs in HBV infection, Hepatitis B remains a major global public health concern. This review summarizes the role of lncRNAs in the diagnosis and treatment of different stages of hepatitis B infection.


Asunto(s)
Carcinoma Hepatocelular , Hepatitis B Crónica , Hepatitis B , Neoplasias Hepáticas , MicroARNs , ARN Largo no Codificante , Humanos , Antígenos de Superficie de la Hepatitis B , Neoplasias Hepáticas/patología , ADN Viral , Virus de la Hepatitis B/genética , Hepatitis B Crónica/complicaciones
9.
Cancer Cell Int ; 23(1): 250, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37880659

RESUMEN

Cancer Stem Cells (CSCs) are the main "seeds" for the initiation, growth, metastasis, and recurrence of tumors. According to many studies, several viral infections, including the human papillomaviruses, hepatitis B virus, Epstein-Barr virus, and hepatitis C virus, promote the aggressiveness of cancer by encouraging the development of CSC features. Therefore, a better method for the targeted elimination of CSCs and knowledge of their regulatory mechanisms in human carcinogenesis may lead to the development of a future tool for the management and treatment of cancer. Oncolytic viruses (OVs), which include the herpes virus, adenovirus, vaccinia, and reovirus, are also a new class of cancer therapeutics that have favorable properties such as selective replication in tumor cells, delivery of numerous eukaryotic transgene payloads, induction of immunogenic cell death and promotion of antitumor immunity, as well as a tolerable safety profile that essentially differs from that of other cancer therapeutics. The effects of viral infection on the development of CSCs and the suppression of CSCs by OV therapy were examined in this paper. The purpose of this review is to investigate the dual role of viruses in CSCs (oncolytic virotherapy and viral oncogenes).

10.
Cancer Cell Int ; 23(1): 284, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37986065

RESUMEN

Carcinoma of the lung is among the most common types of cancer globally. Concerning its histology, it is categorized as a non-small cell carcinoma (NSCLC) and a small cell cancer (SCLC) subtype. MicroRNAs (miRNAs) are a member of non-coding RNA whose nucleotides range from 19 to 25. They are known to be critical regulators of cancer via epigenetic control of oncogenes expression and by regulating tumor suppressor genes. miRNAs have an essential function in a tumorous microenvironment via modulating cancer cell growth, metastasis, angiogenesis, metabolism, and apoptosis. Moreover, a wide range of information produced via several investigations indicates their tumor-suppressing, oncogenic, diagnostic assessment, and predictive marker functions in different types of lung malignancy. miRNA mimics or anti-miRNAs can be transferred into a lung cancer cell, with possible curative implications. As a result, miRNAs hold promise as targets for lung cancer treatment and detection. In this study, we investigate the different functions of various miRNAs in different types of lung malignancy, which have been achieved in recent years that show the lung cancer-associated regulation of miRNAs expression, concerning their function in lung cancer beginning, development, and resistance to chemotherapy, also the probability to utilize miRNAs as predictive biomarkers for therapy reaction.

11.
Virol J ; 20(1): 222, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37789431

RESUMEN

Viral infections in humans are responsible for fatalities worldwide and contribute to the incidence of various human ailments. Controllable targeted medicine delivery against many illnesses, including viral infection, may be significantly aided by using bacteria and bacteria-derived products. They may accumulate in diseased tissues despite physical obstacles, where they can launch antiviral immunity. The ability to genetically and chemically modify them means that vaccinations against viral infections may be manufactured and delivered to affected tissues more safely and effectively. The objective of this study is to provide an overview of the latest advancements in the field of utilizing bacteria and bacterial derivatives as carriers for administering medication to treat viral diseases such as SARS-CoV-2, hepatitis B virus, hepatitis C virus, human immunodeficiency virus, human papillomavirus, influenza, and Ebola virus.


Asunto(s)
COVID-19 , Virosis , Humanos , SARS-CoV-2 , Virosis/tratamiento farmacológico , Antivirales/uso terapéutico , Bacterias , Sistemas de Liberación de Medicamentos
12.
Cell Commun Signal ; 21(1): 20, 2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36690996

RESUMEN

MicroRNAs (miRNAs) are a group of small non-coding RNAs that regulate gene expression by targeting mRNA. Moreover, it has been shown that miRNAs expression are changed in various diseases, such as cancers, autoimmune disease, infectious diseases, and neurodegenerative Diseases. The suppression of miRNA function can be easily attained by utilizing of anti-miRNAs. In contrast, an enhancement in miRNA function can be achieved through the utilization of modified miRNA mimetics. The discovery of appropriate miRNA carriers in the body has become an interesting subject for investigators. Exosomes (EXOs) therapeutic efficiency and safety for transferring different cellular biological components to the recipient cell have attracted significant attention for their capability as miRNA carriers. Mesenchymal stem cells (MSCs) are recognized to generate a wide range of EXOs (MSC-EXOs), showing that MSCs may be effective for EXO generation in a clinically appropriate measure as compared to other cell origins. MSC-EXOs have been widely investigated because of their immune attributes, tumor-homing attributes, and flexible characteristics. In this article, we summarized the features of miRNAs and MSC-EXOs, including production, purification, and miRNA loading methods of MSC-EXOs, and the modification of MSC-EXOs for targeted miRNA delivery in various diseases. Video abstract.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , MicroARNs , MicroARNs/genética , Exosomas/metabolismo , Células Madre Mesenquimatosas/metabolismo
13.
Cell Commun Signal ; 21(1): 85, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-37095512

RESUMEN

Aging is a biological process determined through time-related cellular and functional impairments, leading to a decreased standard of living for the organism. Recently, there has been an unprecedented advance in the aging investigation, especially the detection that the rate of senescence is at least somewhat regulated via evolutionarily preserved genetic pathways and biological processes. Hematopoietic stem cells (HSCs) maintain blood generation over the whole lifetime of an organism. The senescence process influences many of the natural features of HSC, leading to a decline in their capabilities, independently of their microenvironment. New studies show that HSCs are sensitive to age-dependent stress and gradually lose their self-renewal and regeneration potential with senescence. MicroRNAs (miRNAs) are short, non-coding RNAs that post-transcriptionally inhibit translation or stimulate target mRNA cleavage of target transcripts via the sequence-particular connection. MiRNAs control various biological pathways and processes, such as senescence. Several miRNAs are differentially expressed in senescence, producing concern about their use as moderators of the senescence process. MiRNAs play an important role in the control of HSCs and can also modulate processes associated with tissue senescence in specific cell types. In this review, we display the contribution of age-dependent alterations, including DNA damage, epigenetic landscape, metabolism, and extrinsic factors, which affect HSCs function during aging. In addition, we investigate the particular miRNAs regulating HSCs senescence and age-associated diseases. Video Abstract.


Asunto(s)
Longevidad , MicroARNs , Longevidad/genética , MicroARNs/genética , Células Madre Hematopoyéticas , Senescencia Celular
14.
Cell Commun Signal ; 21(1): 231, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37710249

RESUMEN

Cholesterol plays a significant role in stabilizing lipid or membrane rafts, which are specific cellular membrane structures. Cholesterol is involved in numerous cellular processes, including regulating virus entry into the host cell. Multiple viruses have been shown to rely on cholesterol for virus entry and/or morphogenesis. Research indicates that reprogramming of the host's lipid metabolism is associated with hepatitis B virus (HBV) and hepatitis C virus (HCV) infections in the progression to severe liver disease for viruses that cause chronic hepatitis. Moreover, knowing the precise mode of viral interaction with target cells sheds light on viral pathogenesis and aids in the development of vaccines and therapeutic targets. As a result, the area of cholesterol-lowering therapy is quickly evolving and has many novel antiviral targets and medications. It has been shown that microRNAs (miRNAs) either directly or indirectly target the viral genome, preventing viral replication. Moreover, miRNAs have recently been shown to be strong post-transcriptional regulators of the genes involved in lipid metabolism, particularly those involved in cholesterol homeostasis. As important regulators of lipid homeostasis in several viral infections, miRNAs have recently come to light. In addition, multiple studies demonstrated that during viral infection, miRNAs modulate several enzymes in the mevalonate/cholesterol pathway. As cholesterol metabolism is essential to the life cycle of viral hepatitis and other viruses, a sophisticated understanding of miRNA regulation may contribute to the development of a novel anti-HCV treatment. The mechanisms underlying the effectiveness of miRNAs as cholesterol regulators against viral hepatitis are explored in this review. Video Abstract.


Asunto(s)
Anticuerpos , Hepatitis Viral Humana , Humanos , Membrana Celular , Colesterol , Virus de la Hepatitis B
15.
Cell Commun Signal ; 21(1): 318, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37946175

RESUMEN

According to a paper released and submitted to WHO by IARC scientists, there would be 905,700 new cases of liver cancer diagnosed globally in 2020, with 830,200 deaths expected as a direct result. Hepatitis B virus (HBV) hepatitis C virus (HCV), and hepatitis D virus (HDV) all play critical roles in the pathogenesis of hepatocellular carcinoma (HCC), despite the rising prevalence of HCC due to non-infectious causes. Liver cirrhosis and HCC are devastating consequences of HBV and HCV infections, which are widespread worldwide. Associated with a high mortality rate, these infections cause about 1.3 million deaths annually and are the primary cause of HCC globally. In addition to causing insertional mutations due to viral gene integration, epigenetic alterations and inducing chronic immunological dysfunction are all methods by which these viruses turn hepatocytes into cancerous ones. While expanding our knowledge of the illness, identifying these pathways also give possibilities for novel diagnostic and treatment methods. Nuclear factor erythroid 2-related factor 2 (NRF2) activation is gaining popularity as a treatment option for oxidative stress (OS), inflammation, and metabolic abnormalities. Numerous studies have shown that elevated Nrf2 expression is linked to HCC, providing more evidence that Nrf2 is a critical factor in HCC. This aberrant Nrf2 signaling drives cell proliferation, initiates angiogenesis and invasion, and imparts drug resistance. As a result, this master regulator may be a promising treatment target for HCC. In addition, the activation of Nrf2 is a common viral effect that contributes to the pathogenesis, development, and chronicity of virus infection. However, certain viruses suppress Nrf2 activity, which is helpful to the virus in maintaining cellular homeostasis. In this paper, we discussed the influence of Nrf2 deregulation on the viral life cycle and the pathogenesis associated with HBV and HCV. We summed up the mechanisms for the modulation of Nrf2 that are deregulated by these viruses. Moreover, we describe the molecular mechanism by which Nrf2 is modulated in liver cancer, liver cancer stem cells (LCSCs), and liver cancer caused by HBV and HCV. Video Abstract.


Asunto(s)
Carcinoma Hepatocelular , Hepatitis C , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/patología , Carcinoma Hepatocelular/patología , Factor 2 Relacionado con NF-E2 , Hepatitis C/complicaciones , Hepatitis C/patología , Virus de Hepatitis
16.
Cell Commun Signal ; 21(1): 352, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-38098077

RESUMEN

Viruses communicate with their hosts through interactions with proteins, lipids, and carbohydrate moieties on the plasma membrane (PM), often resulting in viral absorption via receptor-mediated endocytosis. Many viruses cannot multiply unless the host's cholesterol level remains steady. The large endo/lysosomal membrane protein (MP) Niemann-Pick C1 (NPC1), which is involved in cellular cholesterol transport, is a crucial intracellular receptor for viral infection. NPC1 is a ubiquitous housekeeping protein essential for the controlled cholesterol efflux from lysosomes. Its human absence results in Niemann-Pick type C disease, a deadly lysosomal storage disorder. NPC1 is a crucial viral receptor and an essential host component for filovirus entrance, infection, and pathogenesis. For filovirus entrance, NPC1's cellular function is unnecessary. Furthermore, blocking NPC1 limits the entry and replication of the African swine fever virus by disrupting cholesterol homeostasis. Cell entrance of quasi-enveloped variants of hepatitis A virus and hepatitis E virus has also been linked to NPC1. By controlling cholesterol levels, NPC1 is also necessary for the effective release of reovirus cores into the cytoplasm. Drugs that limit NPC1's activity are effective against several viruses, including SARS-CoV and Type I Feline Coronavirus (F-CoV). These findings reveal NPC1 as a potential therapeutic target for treating viral illnesses and demonstrate its significance for several viral infections. This article provides a synopsis of NPC1's function in viral infections and a review of NPC1 inhibitors that may be used to counteract viral infections. Video Abstract.


Asunto(s)
Virus de la Fiebre Porcina Africana , Virosis , Humanos , Animales , Porcinos , Glicoproteínas de Membrana/metabolismo , Proteína Niemann-Pick C1 , Virus de la Fiebre Porcina Africana/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Colesterol/metabolismo
17.
Cell Commun Signal ; 21(1): 103, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37158893

RESUMEN

Hematopoietic stem cells (HSCs) are known for their significant capability to reconstitute and preserve a functional hematopoietic system in long-term periods after transplantation into conditioned hosts. HSCs are thus crucial cellular targets for the continual repair of inherited hematologic, metabolic, and immunologic disorders. In addition, HSCs can undergo various fates, such as apoptosis, quiescence, migration, differentiation, and self-renewal. Viruses continuously pose a remarkable health risk and request an appropriate, balanced reaction from our immune system, which as well as affects the bone marrow (BM). Therefore, disruption of the hematopoietic system due to viral infection is essential. In addition, patients for whom the risk-to-benefit ratio of HSC transplantation (HSCT) is acceptable have seen an increase in the use of HSCT in recent years. Hematopoietic suppression, BM failure, and HSC exhaustion are all linked to chronic viral infections. Virus infections continue to be a leading cause of morbidity and mortality in HSCT recipients, despite recent advancements in the field. Furthermore, whereas COVID-19 manifests initially as an infection of the respiratory tract, it is now understood to be a systemic illness that significantly impacts the hematological system. Patients with advanced COVID-19 often have thrombocytopenia and blood hypercoagulability. In the era of COVID-19, Hematological manifestations of COVID-19 (i.e., thrombocytopenia and lymphopenia), the immune response, and HSCT may all be affected by the SARS-CoV-2 virus in various ways. Therefore, it is important to determine whether exposure to viral infections may affect HSCs used for HSCT, as this, in turn, may affect engraftment efficiency. In this article, we reviewed the features of HSCs, and the effects of viral infections on HSCs and HSCT, such as SARS-CoV-2, HIV, cytomegalovirus, Epstein-Barr virus, HIV, etc. Video Abstract.


Asunto(s)
COVID-19 , Infecciones por Virus de Epstein-Barr , Infecciones por VIH , Trombocitopenia , Virosis , Humanos , SARS-CoV-2 , Herpesvirus Humano 4 , Células Madre Hematopoyéticas
18.
J Nanobiotechnology ; 21(1): 283, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37605182

RESUMEN

The gradual deterioration of the supporting periodontal tissues caused by periodontitis, a chronic multifactorial inflammatory disease, is thought to be triggered by the colonization of dysbiotic plaque biofilms in a vulnerable host. One of the most prevalent dental conditions in the world, periodontitis is now the leading factor in adult tooth loss. When periodontitis does develop, it is treated by scraping the mineralized deposits and dental biofilm off the tooth surfaces. Numerous studies have shown that non-surgical treatment significantly improves clinical and microbiological indices in individuals with periodontitis. Although periodontal parameters have significantly improved, certain bacterial reservoirs often persist on root surfaces even after standard periodontal therapy. Periodontitis has been treated with local or systemic antibiotics as well as scaling and root planning. Since there aren't many brand-new antibiotics on the market, several researchers are currently concentrating on creating alternate methods of combating periodontal germs. There is a delay in a study on the subject of nanoparticle (NP) toxicity, which is especially concerned with mechanisms of action, while the area of nanomedicine develops. The most promising of them are metal NPs since they have potent antibacterial action. Metal NPs may be employed as efficient growth inhibitors in a variety of bacteria, making them useful for the treatment of periodontitis. In this way, the new metal NPs contributed significantly to the development of efficient anti-inflammatory and antibacterial platforms for the treatment of periodontitis. The current therapeutic effects of several metallic NPs on periodontitis are summarized in this study. This data might be used to develop NP-based therapeutic alternatives for the treatment of periodontal infections.


Asunto(s)
Nanopartículas del Metal , Periodontitis , Adulto , Humanos , Nanopartículas del Metal/uso terapéutico , Periodontitis/tratamiento farmacológico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Biopelículas , Disbiosis
19.
Curr Microbiol ; 80(6): 195, 2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37106245

RESUMEN

Chronic inflammatory gastrointestinal diseases such as Crohn's disease (CD) and ulcerative colitis (UC) are known as inflammatory bowel disorders (IBD). Patients with inflammatory bowel illnesses are more susceptible to viral infections. In people with IBD, viral infections have emerged as a significant issue. Viral infections are often difficult to identify and have a high morbidity and fatality rate. We reviewed studies on viral infections and IBD, concentrating on Cytomegalovirus (CMV), SARS-CoV-2, Epstein-Barr virus (EBV), enteric viruses, and hepatitis B virus (HBV). Also, the effect of IBD on these viral infections is discussed. These data suggest that patients with IBD are more likely to get viral infections. As a result, practitioners should be aware of the increased risk of viral infections in inflammatory bowel disease patients.


Asunto(s)
COVID-19 , Infecciones por Virus de Epstein-Barr , Enfermedades Inflamatorias del Intestino , Virosis , Humanos , Infecciones por Virus de Epstein-Barr/complicaciones , Herpesvirus Humano 4 , SARS-CoV-2 , Enfermedades Inflamatorias del Intestino/complicaciones , Virosis/complicaciones
20.
World J Microbiol Biotechnol ; 39(7): 190, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37156882

RESUMEN

Bismuth (Bi) combinations have been utilized for the treatment of bacterial infections. In addition, these metal compounds are most frequently utilized for treating gastrointestinal diseases. Usually, Bi is found as bismuthinite (Bi sulfide), bismite (Bi oxide), and bismuthite (Bi carbonate). Newly, Bi nanoparticles (BiNP) were produced for CT imaging or photothermal treatment and nanocarriers for medicine transfer. Further benefits, such as increased biocompatibility and specific surface area, are also seen in regular-size BiNPs. Low toxicity and ecologically favorable attributes have generated interest in BiNPs for biomedical approaches. Moreover, BiNPs offer an option for treating multidrug-resistant (MDR) bacteria because they communicate directly with the bacterial cell wall, induce adaptive and inherent immune reactions, generate reactive oxygen compounds, limit biofilm production, and stimulate intracellular impacts. In addition, BiNPs in amalgamation with X-ray therapy as well as have the capability to treat MDR bacteria. BiNPs as photothermal agents can realize the actual antibacterial through continuous efforts of investigators in the near future. In this article, we summarized the properties of BiNPs, and different preparation methods, also reviewed the latest advances in the BiNPs' performance and their therapeutic effects on various bacterial infections, such as Helicobacter pylori, Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Infecciones Estafilocócicas , Humanos , Bismuto/farmacología , Bacterias , Escherichia coli , Antibacterianos/farmacología , Nanopartículas del Metal/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA