Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Pharm Res ; 38(11): 1961-1975, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34845573

RESUMEN

PURPOSE: Polysorbate excipients are commonly used as surfactants to stabilize therapeutic proteins in formulations. Degradation of polysorbates could lead to particle formation and instability of the drug formulation. We investigated how the fatty acid composition of polysorbate 80 impacts the degradation profile, particle formation, and product stability under stress conditions. METHODS: Two polysorbate 80-containing therapeutic protein formulations were reformulated with either Polysorbate 80 NF synthesized from a fatty acid mixture that contains mainly oleic acid (≥58%) or a version of polysorbate 80 synthesized with high oleic acid (>98%). Stress conditions, including high temperature and esterase spiking, were applied and changes to both the polysorbate and the therapeutic protein product were investigated for stability, purity, innate immune response and biological activity. RESULTS: The addition of esterase and storage at 37°C led to significant hydrolysis of the polysorbate and increases in sub-visible particle formation for both polysorbates tested. The fatty acid composition of polysorbate 80 did not directly alter the stability profile of either therapeutic protein as measured by size exclusion chromatography, or significantly impact innate immune response or biological activity. However, formulations with Polysorbate 80 NF showed greater propensity for sub-visible particle formation under stress conditions. CONCLUSIONS: These results suggest that composition of fatty acids in polysorbate 80 may be a promoter for sub-visible particulate formation under the stress conditions tested but may not impact protein aggregation or biological activity.


Asunto(s)
Excipientes/química , Ácidos Grasos/química , Polisorbatos/química , Rituximab/química , Línea Celular Tumoral , Química Farmacéutica , Composición de Medicamentos/métodos , Humanos , Inmunidad Innata/efectos de los fármacos , Leucocitos Mononucleares , Estabilidad Proteica , Rituximab/farmacología , Rituximab/uso terapéutico
2.
Pharm Dev Technol ; 19(2): 247-56, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23477494

RESUMEN

Amorphous and crystalline solids are commonly found together in a variety of pharmaceutical and food products. In this study, the influence of co-formulation of amorphous maltodextrins (MDs) and crystalline sucrose (S) on moisture sorption, deliquescence, and glass transition (Tg) properties of powder blends was investigated. Individual components and binary mixtures of four different molecular weight MDs with sucrose in 1:1 w/w ratios were exposed to various relative humidity (RH) environments and their equilibrium and dynamic moisture contents were monitored. The deliquescence point (RH0) and dissolution behavior of sucrose alone and in blends was also monitored by polarized light microscopy and second harmonic generation imaging. In S:MD blends, the deliquescence RH of sucrose was lower than the RH0 of sucrose alone, and synergistic moisture sorption also occurred at RHs lower than the RH0. Intimate contact of sucrose crystals with the amorphous MDs resulted in complete dissolution of sucrose at RH < RH0. When blends were stored at conditions exceeding the Tg of the individual MDs (25 °C and 60%, 49% and 34%RH for MD21, MD29 and MD40, respectively), the Tg of the blends was lower than that of individual MDs. Thus, co-formulation of amorphous MDs with crystalline sucrose sensitizes the blend to moisture, potentially leading to deleterious changes in the formulation if storage conditions are not adequately controlled.


Asunto(s)
Polisacáridos/química , Sacarosa/química , Agua/química , Cristalización , Humedad , Temperatura de Transición
3.
AAPS PharmSciTech ; 11(4): 1695-702, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21108027

RESUMEN

Considering the advantageous for the rectal administration of non-steroidal anti-inflammatory drugs, the objective of this study was to formulate and evaluate rectal mucoadhesive hydrogels loaded with diclofenac-sodium chitosan (DFS-CS) microspheres. Hydroxypropyl methylcellulose (HPMC; 5%, 6%, and 7% w/w) and Carbopol 934 (1% w/w) hydrogels containing DFS-CS microspheres equivalent to 1% w/w active drug were prepared. The physicochemical characterization revealed that all hydrogels had a suitable pH for rectal application (6.5-7.4). The consistency of HPMC hydrogels showed direct proportionality to the concentration of the gelling agent, while carbopol 934 gel showed its difficulty for rectal administration. Farrow's constant for all hydrogels were greater than one indicating pseudoplastic flow. In vitro drug release from the mucoadhesive hydrogel formulations showed a controlled drug release pattern, reaching 34.6-39.7% after 6 h. The kinetic analysis of the release data revealed that zero-order was the prominent release mechanism. The mucoadhesion time of 7% w/w HPMC hydrogel was 330 min, allowing the loaded microspheres to be attached to the surface of rectal mucosa. Histopathological examination demonstrated the lowest irritant response to the hydrogel loaded with DFS-CS microspheres in response to other forms of the drug.


Asunto(s)
Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/química , Diclofenaco/administración & dosificación , Diclofenaco/química , Sistemas de Liberación de Medicamentos , Hidrogeles/química , Adhesivos , Administración Rectal , Quitosano/química , Composición de Medicamentos , Concentración de Iones de Hidrógeno , Microesferas , Reología
4.
AAPS PharmSciTech ; 8(4): E84, 2007 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-18181545

RESUMEN

The aims of the study were to evaluate the effect of high shear mixer (HSM) granulation process parameters and scale-up on wet mass consistency and granulation characteristics. A mixer torque rheometer (MTR) was employed to evaluate the granulating solvents used (water, isopropanol, and 1:1 vol/vol mixture of both) based on the wet mass consistency. Gral 25 and mini-HSM were used for the granulation. The MTR study showed that the water significantly enhanced the beta-cyclodextrin (beta CD) binding tendency and the strength of liquid bridges formed between the particles, whereas the isopropanol/water mixture yielded more suitable agglomerates. Mini-HSM granulation with the isopropanol/water mixture (1:1 vol/vol) showed a reduction in the extent of torque value rise by increasing the impeller speed as a result of more breakdown of agglomerates than coalescence. In contrast, increasing the impeller speed of the Gral 25 resulted in higher torque readings, larger granule size, and consequently, slower dissolution. This was due to a remarkable rise in temperature during Gral granulation that reduced the isopropanol/water ratio in the granulating solvent as a result of evaporation and consequently increased the beta CD binding strength. In general, the HSM granulation retarded ibuprofen dissolution compared with the physical mixture because of densification and agglomeration. However, a successful HSM granulation scale-up was not achieved due to the difference in the solvent mixture's effect from 1 scale to the other.


Asunto(s)
Antiinflamatorios no Esteroideos/química , Excipientes/química , Ibuprofeno/química , Tecnología Farmacéutica/métodos , beta-Ciclodextrinas/química , 2-Propanol/química , Química Farmacéutica , Fuerza Compresiva , Composición de Medicamentos , Polvos , Reología , Solubilidad , Solventes/química , Estrés Mecánico , Temperatura , Factores de Tiempo , Torque , Volatilización , Agua/química
5.
AAPS PharmSciTech ; 8(1): 23, 2007 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-17408222

RESUMEN

The aim of this study was to examine the relationship between physical characteristics of compacted ribbons and their thermal effusivity in an attempt to evaluate the feasibility of using effusivity for in-process monitoring of roller compaction. In this study, thermal effusivity, solid fraction, tensile strength, and Young's modulus of ribbons of microcrystalline cellulose (MCC), anhydrous lactose, and placebo (PBO) formulations containing various ratios of MCC to anhydrous lactose (75:20, 55:40, 40:55, and 20:75) were determined at various compaction pressures (25-150 bars). The effusivity-square root of solid fraction relationship was linear for MCC and all the PBO formulations but was a second-order polynomial function for lactose. This could be due to the predominant deformation of lactose by brittle fracture, which might have significantly increased the number and size of contact points between particles, causing a change in thermal conductivity along with a density change. The effusivity-tensile strength and effusivity-Young's modulus relationships were best described by logarithmic functions for MCC but were linear for lactose up to a compaction pressure of 65 bars. There were similar relationships for effusivity with tensile strength and Young's modulus for all PBO formulations except PBO IV, which might have been due to the deformation of lactose, the largest component in this formulation. Strong correlations between effusivity and physical properties of ribbons were established. Although these correlations were formulation-dependent, they demonstrate the possibility of using effusivity as a tool in monitoring roller compaction.


Asunto(s)
Celulosa/química , Portadores de Fármacos/química , Composición de Medicamentos/métodos , Excipientes/química , Ensayo de Materiales/métodos , Tecnología Farmacéutica/métodos , Termografía/métodos , Algoritmos , Difusión , Evaluación Preclínica de Medicamentos/métodos , Presión
6.
J Food Sci ; 82(5): 1142-1156, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28319658

RESUMEN

The effects of coformulating amorphous maltodextrins (MDs) and crystalline fructose, a deliquescent solid, on the moisture sorption, deliquescence point (RH0 ), and glass transition temperature (Tg ) behaviors were determined. Moisture sorption profiles of binary fructose:MD mixtures and individual ingredients were generated using controlled relative humidity (RH) desiccators and by dynamic vapor sorption techniques. Blends exhibited synergistic moisture uptake at RHs below the RH0 of fructose, attributed to partial dissolution of fructose in plasticized MD matrices without a significant reduction in the RH0 of the undissolved fructose. Increasing storage temperature decreased the onset RH for moisture sorption synergy. At all storage RHs, the measured Tg (2nd scan) was significantly reduced in fructose:MD mixtures compared to individual MDs, and was related to both the synergistic moisture uptake in the blends and heat-induced ternary fructose-MD-water interactions in the differential scanning calorimeter. Differences were found between the behavior of fructose:MD blends and previous reports of sucrose:MD and NaCl:MD blends, caused in part by the lower RH0 of fructose. The enhanced moisture sorption in blends of deliquescent and amorphous ingredients could lead to problematic moisture-induced changes if storage conditions are not controlled.


Asunto(s)
Análisis de los Alimentos , Fructosa/química , Polisacáridos/química , Agua/química , Cristalización , Cloruro de Sodio , Sacarosa/química , Temperatura
7.
Acta Pharm Sin B ; 5(1): 79-88, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26579429

RESUMEN

The objective of this study was to prepare cubosomal nanoparticles containing a hydrophilic anticancer drug 5-fluorouracil (5-FU) for liver targeting. Cubosomal dispersions were prepared by disrupting a cubic gel phase of monoolein and water in the presence of Poloxamer 407 as a stabilizer. Cubosomes loaded with 5-FU were characterized in vitro and in vivo. In vitro, 5-FU-loaded cubosomes entrapped 31.21% drug and revealed nanometer-sized particles with a narrow particle size distribution. In vitro 5-FU release from cubosomes exhibited a phase of rapid release of about half of the entrapped drug during the first hour, followed by a relatively slower drug release as compared to 5-FU solution. In vivo biodistribution experiments indicated that the cubosomal formulation significantly (P<0.05) increased 5-FU liver concentration, a value approximately 5-fold greater than that observed with a 5-FU solution. However, serum serological results and histopathological findings revealed greater hepatocellular damage in rats treated with cubosomal formulation. These results demonstrate the successful development of cubosomal nanoparticles containing 5-FU for liver targeting. However, further studies are required to evaluate hepatotoxicity and in vivo antitumor activity of lower doses of 5-FU cubosomal formulation in treatment of liver cancer.

8.
J Pharm Sci ; 92(8): 1690-7, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12884255

RESUMEN

The objectives of this study were to evaluate the bioavailability of cogranulated and oven-dried ibuprofen (IBU) and beta-cyclodextrin (betaCD), in comparison to a physical mixture, and to examine the effect of endogenous bile on the bioavailability of the drug. In vitro dissolution studies were performed using USP type 2 apparatus. The granules and physical mixture were administered perorally in a crossover fashion, to male Wistar bile duct-nonligated rats. The granules were also perorally administered to bile duct-ligated rats. Blood samples were taken at different time intervals and the plasma analyzed for IBU. Dissolution of granules was faster than the physical mixture due to faster IBU-betaCD complex formation in solution from the former than the latter. The in vivo study showed that C(max), AUC(0-8), and the absolute bioavailability for the granules (49.0 microg/mL, 57.0 h x microg/mL and 80.6%, respectively) were almost one and half times that of the physical mixture (32.2 microg/mL, 38.4 h x microg/mL and 53.1%, respectively). However, in bile duct-ligated rats, lower C(max) and AUC(0-8) (15.9 microg/mL and 14.4 h x microg/mL, respectively) were obtained for the granules. Phase solubility study of IBU in an aqueous betaCD solution in the presence of the bile salt (sodium cholate), showed an increase in the solubility of IBU. Moreover, the stability constant value for the IBU-betaCD complex was also found to decrease as the sodium cholate concentration increased. These results indicated that the enhancement in the bioavailability of IBU was due to faster in-solution complex formation, and micelllar solubilization by the bile salt.


Asunto(s)
Ciclodextrinas/farmacocinética , Ibuprofeno/farmacocinética , beta-Ciclodextrinas , Animales , Conductos Biliares/metabolismo , Disponibilidad Biológica , Química Farmacéutica , Ciclodextrinas/química , Combinación de Medicamentos , Ibuprofeno/química , Ligadura , Masculino , Ratas , Ratas Wistar , Solubilidad/efectos de los fármacos
9.
AAPS PharmSciTech ; 3(2): E8, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12916945

RESUMEN

The purpose of this study was to examine the viscoelastic properties of topical creams containing various concentrations of microcrystalline cellulose and sodium carboxymethyl cellulose (Avicel(R) CL-611) as a stabilizer. Avicel CL-611 was used at 4 different levels (1%, 2%, 4%, and 6% dispersion) to prepare topical creams, and hydrocortisone acetate was used as a model drug. The viscoelastic properties such as loss modulus (G"), storage modulus (G'), and loss tangent (tan delta) of these creams were measured using a TA Instruments AR 1000 Rheometer and compared to a commercially available formulation. Continuous flow test to determine the yield stress and thixotropic behavior, and dynamic mechanical tests for determining the linear viscosity time sweep data, were performed. Drug release from the various formulations was studied using an Enhancer TM Cell assembly. Formulations containing 1% and 2% Avicel CL-611 had relative viscosity, yield stress, and thixotropic values that were similar to those of the commercial formulation. The elastic modulus (G') of the 1% and 2% formulation was relatively high and did not cross the loss modulus (G"), indicating that the gels were strong. In the commercial formulation, G' increased after preshearing and broke down after 600 seconds. The strain sweep tests showed that for all formulations containing Avicel CL-611, the G' was above G" with a good distance between them. The gel strength and the predominance of G' can be ranked 6% > 4% > 2%. The strain profiles for the 1% and 2% formulations were similar to those of the commercial formulation. The delta values for the 1% and 2% formulations were similar, and the formulations containing 4% Avicel CL-611 had lower delta values, indicating greater elasticity. Drug release from the commercial preparation was fastest compared to the formulations prepared using Avicel CL-611, a correlation with the viscoelastic properties. It was found that viscoelastic data, especially the strain sweep profiles of products containing Avicel CL-611 1% and 2%, correlated with the commercial formulation. Rheological tests that measure the viscosity, yield stress, thixotropic behavior, other oscillatory parameters such as G' and G" are necessary tools in predicting performance of semisolids.


Asunto(s)
Carboximetilcelulosa de Sodio/química , Celulosa/química , Hidrocortisona/análogos & derivados , Hidrocortisona/química , Bases Oleosas/química , Administración Tópica , Antiinflamatorios/química , Antiinflamatorios/metabolismo , Antiinflamatorios/efectos de la radiación , Carboximetilcelulosa de Sodio/metabolismo , Carboximetilcelulosa de Sodio/efectos de la radiación , Celulosa/metabolismo , Celulosa/efectos de la radiación , Cromatografía Líquida de Alta Presión/métodos , Almacenaje de Medicamentos/métodos , Elasticidad/efectos de la radiación , Hidrocortisona/metabolismo , Hidrocortisona/efectos de la radiación , Bases Oleosas/metabolismo , Bases Oleosas/efectos de la radiación , Reología/métodos , Estrés Mecánico , Tecnología Farmacéutica/instrumentación , Tecnología Farmacéutica/métodos , Viscosidad/efectos de la radiación
10.
Food Chem ; 144: 26-35, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24099538

RESUMEN

The effects of co-formulating amorphous maltodextrins (MDs) and sodium chloride (NaCl), a deliquescent crystalline solid, on moisture sorption, deliquescence point (RH0), and glass transition temperature (Tg) behaviours were investigated. Moisture sorption profiles of binary NaCl:MD mixtures and individual ingredients were generated using controlled relative humidity (RH) desiccators at temperatures from 22 to 50°C and by dynamic vapour sorption (DVS) and dynamic dewpoint sorption (DDS) techniques. Close proximity of MD and NaCl induced synergistic moisture uptake in binary mixtures above a threshold RH, resulting in significantly lower Tgs in binary mixtures compared to individual MDs. The RH0 of NaCl was also lower in the blends. Mixing amorphous MD with crystalline NaCl resulted in synergistic moisture sorption and reduced both Tg and RH0, thus blends were more sensitive to environmental moisture than the individual solids. This has implications for quality control of many formulated powder products.


Asunto(s)
Polisacáridos/química , Cloruro de Sodio/química , Agua/análisis , Adsorción , Desecación/instrumentación , Humedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA