Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 300(7): 107439, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38838774

RESUMEN

The therapeutic application of CRISPR-Cas9 is limited due to its off-target activity. To have a better understanding of this off-target effect, we focused on its mismatch-prone PAM distal end. The off-target activity of SpCas9 depends directly on the nature of mismatches, which in turn results in deviation of the active site of SpCas9 due to structural instability in the RNA-DNA duplex strand. In order to test the hypothesis, we designed an array of mismatched target sites at the PAM distal end and performed in vitro and cell line-based experiments, which showed a strong correlation for Cas9 activity. We found that target sites having multiple mismatches in the 18th to 15th position upstream of the PAM showed no to little activity. For further mechanistic validation, Molecular Dynamics simulations were performed, which revealed that certain mismatches showed elevated root mean square deviation values that can be attributed to conformational instability within the RNA-DNA duplex. Therefore, for successful prediction of the off-target effect of SpCas9, along with complementation-derived energy, the RNA-DNA duplex stability should be taken into account.

2.
Arch Microbiol ; 206(6): 282, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38806859

RESUMEN

Plant growth-promoting rhizobacteria (PGPR) offer an eco-friendly alternative to agrochemicals for better plant growth and development. Here, we evaluated the plant growth promotion abilities of actinobacteria isolated from the tea (Camellia sinensis) rhizosphere of Darjeeling, India. 16 S rRNA gene ribotyping of 28 isolates demonstrated the presence of nine different culturable actinobacterial genera. Assessment of the in vitro PGP traits revealed that Micrococcus sp. AB420 exhibited the highest level of phosphate solubilization (i.e., 445 ± 2.1 µg/ml), whereas Kocuria sp. AB429 and Brachybacterium sp. AB440 showed the highest level of siderophore (25.8 ± 0.1%) and IAA production (101.4 ± 0.5 µg/ml), respectively. Biopriming of maize seeds with the individual actinobacterial isolate revealed statistically significant growth in the treated plants compared to controls. Among them, treatment with Paenarthrobacter sp. AB416 and Brachybacterium sp. AB439 exhibited the highest shoot and root length. Biopriming has also triggered significant enzymatic and non-enzymatic antioxidative defense reactions in maize seedlings both locally and systematically, providing a critical insight into their possible role in the reduction of reactive oxygen species (ROS) burden. To better understand the role of actinobacterial isolates in the modulation of plant defense, three selected actinobacterial isolates, AB426 (Brevibacterium sp.), AB427 (Streptomyces sp.), and AB440 (Brachybacterium sp.) were employed to evaluate the dynamics of induced systemic resistance (ISR) in maize. The expression profile of five key genes involved in SA and JA pathways revealed that bio-priming with actinobacteria (Brevibacterium sp. AB426 and Brachybacterium sp. AB440) preferably modulates the JA pathway rather than the SA pathway. The infection studies in bio-primed maize plants resulted in a delay in disease progression by the biotrophic pathogen Ustilago maydis in infected maize plants, suggesting the positive efficacy of bio-priming in aiding plants to cope with biotic stress. Conclusively, this study unravels the intrinsic mechanisms of PGPR-mediated ISR dynamics in bio-primed plants, offering a futuristic application of these microorganisms in the agricultural fields as an eco-friendly alternative.


Asunto(s)
Actinobacteria , Camellia sinensis , Rizosfera , Semillas , Microbiología del Suelo , Zea mays , Zea mays/microbiología , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo , Actinobacteria/genética , Actinobacteria/aislamiento & purificación , Actinobacteria/metabolismo , Semillas/microbiología , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Camellia sinensis/microbiología , Camellia sinensis/crecimiento & desarrollo , Camellia sinensis/genética , Camellia sinensis/metabolismo , India , Raíces de Plantas/microbiología , Raíces de Plantas/crecimiento & desarrollo , Transducción de Señal , ARN Ribosómico 16S/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Sideróforos/metabolismo
3.
Yeast ; 40(2): 102-116, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36562128

RESUMEN

Ustilago maydis expresses a number of proteases during its pathogenic lifecycle. Some of the proteases including both intracellular and extracellular ones have previously been shown to influence the virulence of the pathogen. However, any role of secreted proteases in the sporulation process of U. maydis have not been explored earlier. In this study we have investigated the biological function of one such secreted protease, Ger1 belonging to aspartic protease A1 family. An assessment of the real time expression of ger1 revealed an infection specific expression of the protein especially during late phases of infection. We also evaluated any contribution of the protein in the pathogenicity of the fungus. Our data revealed an involvement of Ger1 in the sporulation and spore germination processes of U. maydis. Ger1 also showed positive influence on the pathogenicity of the fungus and accordingly the ger1 deletion mutant exhibited reduced pathogenicity. The study also demonstrated the protease activity associated with Ger1 to be essential for its biological function. Fluorescence microscopy of maize plants infected with U. maydis cells expressing Ger1-mcherry-HA also revealed that Ger1 is efficiently secreted within maize apoplast.


Asunto(s)
Proteasas de Ácido Aspártico , Basidiomycota , Ustilago , Proteasas de Ácido Aspártico/genética , Proteasas de Ácido Aspártico/metabolismo , Ustilago/genética , Ustilago/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Esporas/metabolismo
4.
Environ Geochem Health ; 45(5): 1261-1287, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35841495

RESUMEN

Bangladesh, situated in Bengal delta, is one of the worst affected countries by arsenic contamination in groundwater. Most of the people in the country are dependent on groundwater for domestic and irrigation purposes. Currently, 61 districts out of 64 districts of Bangladesh are affected by arsenic contamination. Drinking arsenic contaminated groundwater is the main pathway of arsenic exposure in the population. Additionally, the use of arsenic-contaminated groundwater for irrigation purpose in crop fields in Bangladesh has elevated arsenic concentration in surface soil and in the plants. In many arsenic-affected countries, including Bangladesh, rice is reported to be one of the significant sources of arsenic contamination. This review discussed scenario of groundwater arsenic contamination and transmission of arsenic through food chain in Bangladesh. The study further highlighted the human health perspectives of arsenic exposure in Bangladesh with possible mitigation and remediation options employed in the country.


Asunto(s)
Arsénico , Agua Subterránea , Contaminantes Químicos del Agua , Humanos , Arsénico/análisis , Bangladesh , Cadena Alimentaria , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Contaminación de Alimentos/análisis
5.
Environ Microbiol ; 24(6): 2716-2731, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34913573

RESUMEN

India contributes 28% of the world's tea production, and the Darjeeling tea of India is a world-famous tea variety known for its unique quality, flavour and aroma. This study analyzed the spatial distribution of bacterial communities in the tea rhizosphere of six different tea estates at different altitudes. The organic carbon, total nitrogen and available phosphate were higher in the rhizosphere soils than the bulk soils, irrespective of the sites. Alpha and beta diversities were significantly (p < 0.05) higher in the bulk soil than in the rhizosphere. Among the identified phyla, the predominant ones were Proteobacteria, Actinobacteria and Acidobacteria. At the genus level, only four out of 23 predominant genera (>1% relative abundance) could be classified, viz., Candidatus Solibacter (5.36 ± 0.36%), Rhodoplanes (4.87 ± 0.3%), Candidatus Koribacter (2.3 ± 0.67%), Prevotella (1.49 ± 0.26%). The rhizosphere effect was prominent from the significant depletion of more ASVs (n = 39) compared to enrichment (n = 11). The functional genes also exhibit a similar trend with the enrichment of N2 fixation genes, disease suppression and Acetoin synthesis. Our study reports that the rhizobiome of tea is highly selective by reducing the alpha and beta diversity while enriching the significant functional genes.


Asunto(s)
Camellia sinensis , Rizosfera , Acidobacteria/genética , Bacterias/genética , India , Suelo/química , Microbiología del Suelo ,
6.
J Biomed Sci ; 29(1): 28, 2022 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-35524246

RESUMEN

BACKGROUND: Curiosity on toxin-antitoxin modules has increased intensely over recent years as it is ubiquitously present in many bacterial genomes, including pathogens like Methicillin-resistant Staphylococcus aureus (MRSA). Several cellular functions of TA systems have been proposed however, their exact role in cellular physiology remains unresolved. METHODS: This study aims to find out the impact of the mazEF toxin-antitoxin module on biofilm formation, pathogenesis, and antibiotic resistance in an isolated clinical ST239 MRSA strain, by constructing mazE and mazF mutants using CRISPR-cas9 base-editing plasmid (pnCasSA-BEC). Transcriptome analysis (RNA-seq) was performed for the mazE antitoxin mutant in order to identify the differentially regulated genes. The biofilm formation was also assessed for the mutant strains. Antibiogram profiling was carried out for both the generated mutants followed by murine experiment to determine the pathogenicity of the constructed strains. RESULTS: For the first time our work showed, that MazF promotes cidA mediated cell death and lysis for biofilm formation without playing any significant role in host virulence as suggested by the murine experiment. Interestingly, the susceptibility to oxacillin, daptomycin and vancomycin was reduced significantly by the activated MazF toxin in the mazE mutant strain. CONCLUSIONS: Our study reveals that activated MazF toxin leads to resistance to antibiotics like oxacillin, daptomycin and vancomycin. Therefore, in the future, any potential antibacterial drug can be designed to target MazF toxin against the problematic multi-drug resistant bug.


Asunto(s)
Daptomicina , Staphylococcus aureus Resistente a Meticilina , Sistemas Toxina-Antitoxina , Animales , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Citidina Desaminasa , Staphylococcus aureus Resistente a Meticilina/genética , Ratones , Oxacilina , ARN , Sistemas Toxina-Antitoxina/genética , Vancomicina
7.
Biochem Biophys Res Commun ; 566: 53-58, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34116357

RESUMEN

The signal recognition particle (SRP) plays an essential role in protein translocation across biological membranes. Stable complexation of two GTPases in the signal recognition particle (SRP) and its receptor (SR) control the delivery of nascent polypeptide to the membrane translocon. In archaea, protein targeting is mediated by the SRP54/SRP19/7S RNA ribonucleoprotein complex (SRP) and the FtsY protein (SR). In the present study, using fluorescence resonance energy transfer (FRET), we demonstrate that archaeal 7S RNA stabilizes the SRP54·FtsY targeting complex (TC). Moreover, we show that archaeal SRP19 further assists 7S RNA in stabilizing the targeting complex (TC). These results suggest that archaeal 7S RNA and SRP19 modulate the conformation of the targeting complex and thereby reinforce TC to execute protein translocation via concomitant GTP hydrolysis.


Asunto(s)
Proteínas Arqueales/metabolismo , ARN Citoplasmático Pequeño/metabolismo , Partícula de Reconocimiento de Señal/metabolismo , Sulfolobus acidocaldarius/metabolismo , Guanosina Trifosfato/metabolismo , Hidrólisis , Modelos Moleculares
8.
Cell Microbiol ; 22(12): e13256, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32844528

RESUMEN

Ustilago maydis genome codes for many secreted ribonucleases. The contribution of two among these belonging to the T2 family (Nuc1 and Nuc2) in the pathogen virulence, has been assessed in this study. The nuc1 and nuc2 deletion mutants showed not only reduced pathogenicity compared to the SG200 WT strain but also exhibited significant delay in the completion of the pathogenic lifecycle. Both the proteins were also tested for their nucleolytic activities towards RNA substrates from maize and yeast. This also yielded valuable insights into the ability of the ribonucleases to utilise extracellular RNA as a nutrient source. Our study therefore established a role of two T2 type secreted ribonucleases of a phytopathogen in the acquisition of nutrient for the first time. This study also provides evidence that maize apoplast contains RNA, which can be utilised as a substrate by both Nuc1 and Nuc2.


Asunto(s)
Basidiomycota/enzimología , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Proteínas Fúngicas/metabolismo , ARN/metabolismo , Antígenos Fúngicos , Basidiomycota/genética , Basidiomycota/metabolismo , Basidiomycota/patogenicidad , Endorribonucleasas/clasificación , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Interacciones Huésped-Patógeno , Virulencia/genética , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Zea mays/metabolismo
9.
Mol Cell ; 49(6): 1069-82, 2013 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-23416110

RESUMEN

Superfamily ATPases in type IV pili, type 2 secretion, and archaella (formerly archaeal flagella) employ similar sequences for distinct biological processes. Here, we structurally and functionally characterize prototypical superfamily ATPase FlaI in Sulfolobus acidocaldarius, showing FlaI activities in archaeal swimming-organelle assembly and movement. X-ray scattering data of FlaI in solution and crystal structures with and without nucleotide reveal a hexameric crown assembly with key cross-subunit interactions. Rigid building blocks form between N-terminal domains (points) and neighboring subunit C-terminal domains (crown ring). Upon nucleotide binding, these six cross-subunit blocks move with respect to each other and distinctly from secretion and pilus ATPases. Crown interactions and conformations regulate assembly, motility, and force direction via a basic-clamp switching mechanism driving conformational changes between stable, backbone-interconnected moving blocks. Collective structural and mutational results identify in vivo functional components for assembly and motility, phosphate-triggered rearrangements by ATP hydrolysis, and molecular predictors for distinct ATPase superfamily functions.


Asunto(s)
Adenosina Trifosfatasas/química , Proteínas Arqueales/química , Sulfolobus acidocaldarius/fisiología , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/fisiología , Adenosina Trifosfato/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Proteínas Arqueales/genética , Proteínas Arqueales/fisiología , Dominio Catalítico , Cristalografía por Rayos X , Flagelos/enzimología , Flagelos/ultraestructura , Hidrólisis , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Unión Proteica , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Sulfolobus acidocaldarius/ultraestructura , Propiedades de Superficie
10.
Ecotoxicol Environ Saf ; 195: 110481, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32203775

RESUMEN

Archaea remain important players in global biogeochemical cycles worldwide, including in the highly productive mangrove estuarine ecosystems. In the present study, we have explored the diversity, distribution, and function of the metabolically active fraction of the resident archaeal community of the Sundarban mangrove ecosystem, using both culture-independent and culture-dependent approaches. To evaluate the diversity and distribution pattern of the active archaeal communities, RNA based analysis of the 16S rRNA gene was performed on an Illumina platform. The active Crenarchaeal community was observed to remain constant while active Euryarchaeal community underwent considerable change across the sampling sites depending on varying anthropogenic factors. Haloarchaea were the predominant group in hydrocarbon polluted sediments, leading us to successfully isolate eleven p-hydroxybenzoic acid degrading haloarchaeal species. The isolates could also survive in benzoic acid, naphthalene, and o-phthalate. Quantitative estimation of p-hydroxybenzoic acid degradation was studied on select isolates, and their ability to reduce COD of polluted saline waters of Sundarban was also evaluated. To our knowledge, this is the first ever study combining culture-independent (Next Generation sequencing and metatranscriptome) and culture-dependent analyses for an assessment of archaeal function in the sediment of Sundarban.


Asunto(s)
Archaea/metabolismo , Sedimentos Geológicos/microbiología , Hidrocarburos/metabolismo , Contaminantes Químicos del Agua/metabolismo , Archaea/genética , Archaea/aislamiento & purificación , Biodegradación Ambiental , Crenarchaeota/aislamiento & purificación , Euryarchaeota/aislamiento & purificación , Parabenos/metabolismo , ARN Ribosómico 16S/genética , Humedales
11.
Mol Microbiol ; 99(4): 674-85, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26508112

RESUMEN

The motor of the membrane-anchored archaeal motility structure, the archaellum, contains FlaX, FlaI and FlaH. FlaX forms a 30 nm ring structure that acts as a scaffold protein and was shown to interact with the bifunctional ATPase FlaI and FlaH. However, the structure and function of FlaH has been enigmatic. Here we present structural and functional analyses of isolated FlaH and archaellum motor subcomplexes. The FlaH crystal structure reveals a RecA/Rad51 family fold with an ATP bound on a conserved and exposed surface, which presumably forms an oligomerization interface. FlaH does not hydrolyze ATP in vitro, but ATP binding to FlaH is essential for its interaction with FlaI and for archaellum assembly. FlaH interacts with the C-terminus of FlaX, which was earlier shown to be essential for FlaX ring formation and to mediate interaction with FlaI. Electron microscopy reveals that FlaH assembles as a second ring inside the FlaX ring in vitro. Collectively these data reveal central structural mechanisms for FlaH interactions in mediating archaellar assembly: FlaH binding within the FlaX ring and nucleotide-regulated FlaH binding to FlaI form the archaellar basal body core.


Asunto(s)
Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Flagelos/fisiología , Nucleótidos/metabolismo , Sulfolobus acidocaldarius/metabolismo , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas Arqueales/fisiología , Cristalización , Cristalografía por Rayos X , Flagelina/metabolismo , Genes Arqueales , Microscopía Electrónica , Modelos Moleculares , Movimiento , Sulfolobus acidocaldarius/genética
12.
Curr Microbiol ; 74(2): 284-297, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27900448

RESUMEN

The signal recognition particle (SRP) and its receptor constitute universally conserved and essential cellular machinery that controls the proper membrane localization of nascent polypeptides with the transmembrane domain. In the past decade, there has been an immense advancement in our understanding of this targeting machine in all three domains of life. A significant portion of such progress came from the structural analysis of archaeal SRP components. Despite the availability of structural insights from different archaeal SRP components, little is known about protein translocation in this domain of life compared to either bacteria or eukaryotes. One of the primary reasons being limited availability of the genetic and cell biological tools in archaea. In the present review, an attempt has been made to explore the structural information available for archaeal SRP components to gain insights into the protein translocation mechanism of this group of organisms. Besides, many exciting avenues of archaeal research possible using the recently developed genetic and cell biological tools for some species have been identified.


Asunto(s)
Archaea/fisiología , Proteínas Arqueales/metabolismo , Proteínas de la Membrana/metabolismo , Partícula de Reconocimiento de Señal/metabolismo , Archaea/metabolismo , Archaea/ultraestructura , Transporte de Proteínas , Partícula de Reconocimiento de Señal/ultraestructura
13.
Archaea ; 2015: 968582, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26346219

RESUMEN

Mangroves are among the most diverse and productive coastal ecosystems in the tropical and subtropical regions. Environmental conditions particular to this biome make mangroves hotspots for microbial diversity, and the resident microbial communities play essential roles in maintenance of the ecosystem. Recently, there has been increasing interest to understand the composition and contribution of microorganisms in mangroves. In the present study, we have analyzed the diversity and distribution of archaea in the tropical mangrove sediments of Sundarbans using 16S rRNA gene amplicon sequencing. The extraction of DNA from sediment samples and the direct application of 16S rRNA gene amplicon sequencing resulted in approximately 142 Mb of data from three distinct mangrove areas (Godkhali, Bonnie camp, and Dhulibhashani). The taxonomic analysis revealed the dominance of phyla Euryarchaeota and Thaumarchaeota (Marine Group I) within our dataset. The distribution of different archaeal taxa and respective statistical analysis (SIMPER, NMDS) revealed a clear community shift along the sampling stations. The sampling stations (Godkhali and Bonnie camp) with history of higher hydrocarbon/oil pollution showed different archaeal community pattern (dominated by haloarchaea) compared to station (Dhulibhashani) with nearly pristine environment (dominated by methanogens). It is indicated that sediment archaeal community patterns were influenced by environmental conditions.


Asunto(s)
Archaea/clasificación , Archaea/aislamiento & purificación , Biodiversidad , Microbiología Ambiental , Humedales , Archaea/genética , Análisis por Conglomerados , ADN de Archaea/química , ADN de Archaea/genética , ADN Ribosómico/química , ADN Ribosómico/genética , India , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Clima Tropical
14.
BMC Microbiol ; 15: 170, 2015 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-26293487

RESUMEN

BACKGROUND: New broad spectrum antimicrobial agents are urgently needed to combat frequently emerging multi drug resistant pathogens. Actinomycetes, the most talented group of microorganisms isolated from unexplored regions of the world may be the ultimate solution to this problem. Thus the aim of this study was to isolate several bioactive actinomycetes strains capable of producing antimicrobial secondary metabolite from Sundarbans, the only mangrove tiger land of the world. RESULTS: Fifty four actinomycetes were isolated and analyzed for antimicrobial activity against fifteen test organisms including three phytopathogens. Nine morphologically distinct and biologically active isolates were subjected to polyphasic identification study.16 s rDNA sequencing indicated eight isolates to reveal maximum similarity to the genus streptomyces, whereas one isolate presented only 93.57% similarity with Streptomyces albogriseolus NRRL B-1305(T). Seventy-one carbon sources and twenty-three chemical sources utilization assay revealed their metabolic relatedness. Among these nine isolates three specific strains were found to have notably higher degree of antimicrobial potential effective in a broader range including phyto-pathogenic fungus. Finally the strain SMS_SU21, which showed antimicrobial activity with MIC value of 0.05 mg ml(-1) and antioxidant activity with IC50 value of 0.242 ± 0.33 mg ml(-1) was detected to be the most potential one. True prospective of this strain was evaluated utilizing GC-MS and the bioactive compound responsible for antimicrobial activity was purified. CONCLUSION: Rare bioactive actinomycetes were isolated from unexplored heritage site. Antimicrobial compound has also been identified and purified which is active against a broad range of pathogens.


Asunto(s)
Actinobacteria/aislamiento & purificación , Actinobacteria/metabolismo , Antiinfecciosos/metabolismo , Microbiología Ambiental , Actinobacteria/clasificación , Actinobacteria/genética , Antiinfecciosos/aislamiento & purificación , Antiinfecciosos/farmacología , Bacterias/efectos de los fármacos , Técnicas de Tipificación Bacteriana , Bangladesh , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Hongos/efectos de los fármacos , Cromatografía de Gases y Espectrometría de Masas , India , Concentración 50 Inhibidora , Pruebas de Sensibilidad Microbiana , Datos de Secuencia Molecular , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
15.
Microb Ecol ; 69(3): 500-11, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25256302

RESUMEN

The influence of temporal and spatial variations on the microbial community composition was assessed in the unique coastal mangrove of Sundarbans using parallel 16S rRNA gene pyrosequencing. The total sediment DNA was extracted and subjected to the 16S rRNA gene pyrosequencing, which resulted in 117 Mbp of data from three experimental stations. The taxonomic analysis of the pyrosequencing data was grouped into 24 different phyla. In general, Proteobacteria were the most dominant phyla with predominance of Deltaproteobacteria, Alphaproteobacteria, and Gammaproteobacteria within the sediments. Besides Proteobacteria, there are a number of sequences affiliated to the following major phyla detected in all three stations in both the sampling seasons: Actinobacteria, Bacteroidetes, Planctomycetes, Acidobacteria, Chloroflexi, Cyanobacteria, Nitrospira, and Firmicutes. Further taxonomic analysis revealed abundance of micro-aerophilic and anaerobic microbial population in the surface layers, suggesting anaerobic nature of the sediments in Sundarbans. The results of this study add valuable information about the composition of microbial communities in Sundarbans mangrove and shed light on possible transformations promoted by bacterial communities in the sediments.


Asunto(s)
Bacterias/aislamiento & purificación , Sedimentos Geológicos/microbiología , Microbiota , Bacterias/genética , Bacterias/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , India , Datos de Secuencia Molecular , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Análisis de Secuencia de ADN , Análisis Espacio-Temporal , Humedales
16.
Bioprocess Biosyst Eng ; 38(2): 341-51, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25194464

RESUMEN

Degummed ramie fiber is widely used in the textile industry. Cellulase enzyme can be effectively used for bio-polishing of the ramie fiber. We immobilized Agrobacterium larrymoorei A1, a potent extra-cellular cellulase producing bacteria, in Ca-alginate. The production of enzyme significantly increased with increasing alginate concentration and reached a maximum activity of 0.28 IU/ml at 20 g/l, which was 32% higher as compared to free cells. These immobilized cells were used on ramie fibers. Scanning electron micrograph (SEM) and differential interference contrast (DIC) studies showed increased smoothness and orientation of surface structure of the fibers after 19.5 h. The single fiber tenacity was almost same as compared to non-treated fiber and the initial modulus increased by 24.01%. The remarkable reusability of these immobilized cells provides a cost effective method for treatment of natural fibers containing cellulose.


Asunto(s)
Agrobacterium/citología , Agrobacterium/enzimología , Boehmeria/química , Celulasa/química , Colágenos Fibrilares/química , Células Inmovilizadas/fisiología , Propiedades de Superficie
17.
World J Microbiol Biotechnol ; 31(4): 593-610, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25655378

RESUMEN

Mangrove microbial communities and their associated activities have profound impact on biogeochemical cycles. Although microbial composition and structure are known to be influenced by biotic and abiotic factors in the mangrove sediments, finding direct correlations between them remains a challenge. In this study we have explored sediment bacterial diversity of the Sundarbans, a world heritage site using a culture-independent molecular approach. Bacterial diversity was analyzed from three different locations with a history of exposure to differential anthropogenic activities. 16S rRNA gene libraries were constructed and partial sequencing of the clones was performed to identify the microbial strains. We identified bacterial strains known to be involved in a variety of biodegradation/biotransformation processes including hydrocarbon degradation, and heavy metal resistance. Canonical Correspondence Analysis of the environmental and exploratory datasets revealed correlations between the ecological indices associated with pollutant levels and bacterial diversity across the sites. Our results indicate that sites with similar exposure of anthropogenic intervention reflect similar patterns of microbial diversity besides spatial commonalities.


Asunto(s)
Bacterias/aislamiento & purificación , Bacterias/metabolismo , Biodiversidad , Contaminantes Ambientales/metabolismo , Sedimentos Geológicos/microbiología , Bacterias/clasificación , Bacterias/genética , Contaminantes Ambientales/análisis , Sedimentos Geológicos/análisis , Hidrocarburos Aromáticos/análisis , Hidrocarburos Aromáticos/metabolismo , Datos de Secuencia Molecular , Filogenia , Humedales
18.
Appl Environ Microbiol ; 80(3): 1072-81, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24271181

RESUMEN

In this study, the regulator MalR (Saci_1161) of the TrmB family from Sulfolobus acidocaldarius was identified and was shown to be involved in transcriptional control of the maltose regulon (Saci_1660 to Saci_1666), including the ABC transporter (malEFGK), α-amylase (amyA), and α-glycosidase (malA). The ΔmalR deletion mutant exhibited a significantly decreased growth rate on maltose and dextrin but not on sucrose. The expression of the genes organized in the maltose regulon was induced only in the presence of MalR and maltose in the growth medium, indicating that MalR, in contrast to its TrmB and TrmB-like homologues, is an activator of the maltose gene cluster. Electrophoretic mobility shift assays revealed that the binding of MalR to malE was independent of sugars. Here we report the identification of the archaeal maltose regulator protein MalR, which acts as an activator and controls the expression of genes involved in maltose transport and metabolic conversion in S. acidocaldarius, and its use for improvement of the S. acidocaldarius expression system under the control of an optimized maltose binding protein (malE) promoter by promoter mutagenesis.


Asunto(s)
Maltosa/metabolismo , Redes y Vías Metabólicas/genética , Regiones Promotoras Genéticas , Regulón , Sulfolobus acidocaldarius/metabolismo , Factores de Transcripción/genética , Ensayo de Cambio de Movilidad Electroforética , Eliminación de Gen , Regulación de la Expresión Génica , Unión Proteica , Sulfolobus acidocaldarius/genética , Factores de Transcripción/metabolismo
19.
Extremophiles ; 18(5): 905-13, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25102813

RESUMEN

In Archaea, type IV prepilins and prearchaellins are processed by designated signal peptidase III (SPaseIII) prior to their incorporation into pili and the archaellum, respectively. These peptidases belong to the family of integral membrane aspartic acid proteases that contain two essential aspartate residues of which the second aspartate is located in a conserved GxGD motif. To this group also bacterial type IV prepilin peptidases, Alzheimer disease-related secretases, signal peptide peptidases and signal peptide peptidase-like proteases in humans belong. Here we have performed detailed in vivo analyses to understand the cleavage activity of PibD, SPaseIII from the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. Using an already established in vivo heterologous system cleavage assay, we could successfully identify the key amino acid residues essential for catalysis of PibD. Furthermore, in trans complementation of a pibD S. acidocaldarius deletion mutant with PibD variants having substituted key amino acids has consolidated our observations of the importance of these residues in catalysis. Based on our data, we propose to re-define class III peptidases/type IV prepilin/prearchaellin peptidases as GxHyD group (rather than GxGD) of proteases [Hy-hydrophobic amino acid].


Asunto(s)
Proteínas Arqueales/metabolismo , Endopeptidasas/metabolismo , Sulfolobus acidocaldarius/enzimología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas Arqueales/química , Proteínas Arqueales/genética , Endopeptidasas/química , Endopeptidasas/genética , Datos de Secuencia Molecular , Proteolisis , Sulfolobus acidocaldarius/genética
20.
FEBS J ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38923213

RESUMEN

External stress disrupts the balance of protein homeostasis, necessitating the involvement of heat shock proteins (Hsps) in restoring equilibrium and ensuring cellular survival. The thermoacidophilic crenarchaeon Sulfolobus acidocaldarius, lacks the conventional Hsp100, Hsp90, and Hsp70, relying solely on a single ATP-dependent Group II chaperonin, Hsp60, comprising three distinct subunits (α, ß, and γ) to refold unfolded substrates and maintain protein homeostasis. Hsp60 forms three different complexes, namely Hsp60αßγ, Hsp60αß, and Hsp60ß, at temperatures of 60 °C, 75 °C, and 90 °C, respectively. This study delves into the intricacies of Hsp60 complexes in S. acidocaldarius, uncovering their ability to form oligomeric structures in the presence of ATP. The recognition of substrates by Hsp60 involves hydrophobic interactions, and the subsequent refolding process occurs in an ATP-dependent manner through charge-driven interactions. Furthermore, the Hsp60ß homo-oligomeric complex can protect the archaeal and eukaryotic membrane from stress-induced damage. Hsp60 demonstrates nested cooperativity in ATP hydrolysis activity, where MWC-type cooperativity is nested within KNF-type cooperativity. Remarkably, during ATP hydrolysis, Hsp60ß, and Hsp60αß complexes exhibit a mosaic behavior, aligning with characteristics observed in both Group I and Group II chaperonins, adding a layer of complexity to their functionality.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA