Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Entropy (Basel) ; 24(9)2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36141177

RESUMEN

Bayesian techniques for engineering problems, which rely on Gaussian process (GP) regression, are known for their ability to quantify epistemic and aleatory uncertainties and for being data efficient. The mathematical elegance of applying these methods usually comes at a high computational cost when compared to deterministic and empirical Bayesian methods. Furthermore, using these methods becomes practically infeasible in scenarios characterized by a large number of inputs and thousands of training data. The focus of this work is on enhancing Gaussian process based metamodeling and model calibration tasks, when the size of the training datasets is significantly large. To achieve this goal, we employ a stochastic variational inference algorithm that enables rapid statistical learning of the calibration parameters and hyperparameter tuning, while retaining the rigor of Bayesian inference. The numerical performance of the algorithm is demonstrated on multiple metamodeling and model calibration problems with thousands of training data.

2.
Cell Mol Life Sci ; 77(5): 835-851, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31901947

RESUMEN

Lipocalins are a family of secreted adipokines which play important roles in various biological processes. Lipocalin-2 (LCN-2) has been shown to be involved in acute and chronic inflammation. This particular protein is critical in the pathogenesis of several diseases including cancer, diabetes, obesity, and multiple sclerosis. Herein, we discuss the general molecular basis for the involvement of LCN-2 in acute infections and chronic disease progression and also ascertain the probable role of LCN-2 in ocular diseases, particularly in age-related macular degeneration (AMD). We elaborate on the signaling cascades which trigger LCN-2 upregulation in AMD and suggest therapeutic strategies for targeting such pathways.


Asunto(s)
Lipocalina 2/genética , Lipocalina 2/metabolismo , Degeneración Macular/genética , Degeneración Macular/patología , Trastornos de la Visión/genética , Animales , Modelos Animales de Enfermedad , Humanos , Inflamación/patología , Ratones , Retina/patología , Epitelio Pigmentado de la Retina/patología , Transducción de Señal , Trastornos de la Visión/patología
3.
Int J Mol Sci ; 22(21)2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34769409

RESUMEN

Degeneration of retinal pigment epithelium (RPE) is one of the most critical phenotypic changes of age-related macular degeneration (AMD), the leading cause of vision loss in the elderly. While cultured polarized RPE cells with original properties are valuable in in vitro models to study RPE biology and the consequences of genetic and/or pharmacological manipulations, the procedure to establish mouse primary PRE cell culture or pluripotent stem cell-derived RPE cells is time-consuming and yields a limited number of cells. Thus, establishing a mouse in situ RPE culture system is highly desirable. Here we describe a novel and efficient method for RPE explant culture that allows for obtaining biologically relevant RPE cells in situ. These RPE explants (herein referred to as RPE flatmounts) are viable in culture for at least 7 days, can be efficiently transduced with adenoviral constructs, and/or treated with a variety of drugs/chemicals followed by downstream analysis of the signaling pathways/biological processes of interest, such as assessment of the autophagy flux, inflammatory response, and receptor tyrosine kinases stimulation. This method of RPE explant culture is highly beneficial for pharmacological and mechanistic studies in the field of RPE biology and AMD research.


Asunto(s)
Adenoviridae/genética , Vectores Genéticos/administración & dosificación , Degeneración Macular/patología , Técnicas de Cultivo de Órganos/métodos , Epitelio Pigmentado de la Retina/citología , Transgenes , Animales , Células Cultivadas , Degeneración Macular/genética , Degeneración Macular/metabolismo , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Epitelio Pigmentado de la Retina/metabolismo , Transducción Genética
4.
Immunol Cell Biol ; 97(5): 470-484, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30582666

RESUMEN

Inappropriate functioning of the immune system is observed during sustained systemic inflammation, which might lead to immune deficiencies, autoimmune disorders and cancer. Primary lymphoid organs may progress to a deregulated proliferative state in response to inflammatory signals in order to intensify host defense mechanisms and exacerbate an inflammatory niche. Fluoxetine, a selective serotonin reuptake inhibitor, has recently been projected as an anti-inflammatory agent. This study had been designed to evaluate the potential novel role of fluoxetine in reversing inflammation-induced immune dysfunction. Lipopolysaccharide (LPS) administration in Swiss albino mice potentiated a systemic inflammatory response, along with increased proliferation of thymocytes and peripheral blood mononuclear cells, as evident from increased Ki-67 expression. The proliferative changes in the immune system were mainly associated with increased phosphorylation of PI3k, AKT and IκB along with elevated NFκB-p65 nuclear translocation. The Ki-67high thymocytes obtained from LPS administered mice demonstrated significantly low p53 nuclear activity, which was established to be mediated by NFκB through reduced nuclear translocation of p53 during LPS-induced proliferative conditions, thereby blocking p53-dependent apoptosis. Fluoxetine supplementation not only reversed the proinflammatory condition, but also induced selective apoptosis in the proliferation-dictated Ki-67high thymocytes possibly by modulating the hypothalamus-pituitary-adrenal axis and inducing glucocorticoid receptor activation and apoptosis in these proliferation-biased immune cells, authenticating a novel antiproliferative role of an established drug.


Asunto(s)
Apoptosis/efectos de los fármacos , Fluoxetina/farmacología , Antígeno Ki-67/inmunología , Timocitos/inmunología , Animales , Apoptosis/inmunología , Inflamación/inducido químicamente , Inflamación/inmunología , Inflamación/patología , Lipopolisacáridos/toxicidad , Masculino , Ratones , Fosfatidilinositol 3-Quinasas/inmunología , Proteínas Proto-Oncogénicas c-akt/inmunología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Timocitos/patología , Factor de Transcripción ReIA/inmunología
5.
Adv Exp Med Biol ; 1185: 45-49, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31884587

RESUMEN

The association between age-related macular degeneration (AMD) and biological rhythms has been insufficiently studied; however there are several reasons to believe that impairment in circadian rhythm may affect incidence and pathogenesis of AMD. The current understanding of AMD pathology is based on age-related, cumulative oxidative damage to the retinal pigmented epithelium (RPE) partially due to impaired clearance of phagocytosed photoreceptor outer segments. In higher vertebrates, phagocytosis of the outer segments is synchronized by circadian rhythms and occurs shortly after dawn, followed by lysosomal-mediated clearance. Aging has been shown to be associated with the changes in circadian rhythmicity of melatonin production, which can be a major factor contributing to the impaired balance between phagocytosis and clearance and increased levels of reactive oxygen species resulting in degenerative changes in the retina. This minireview summarizes studies linking AMD with melatonin production and discusses challenges and perspectives of this area of research.


Asunto(s)
Ritmo Circadiano , Degeneración Macular/patología , Melatonina/biosíntesis , Epitelio Pigmentado de la Retina/patología , Animales , Humanos , Fagocitosis , Especies Reactivas de Oxígeno
6.
J Pathol ; 241(5): 583-588, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28026019

RESUMEN

Age-related macular degeneration (AMD) is a complex and progressive degenerative eye disease resulting in severe loss of central vision. Recent evidence indicates that immune system dysregulation could contribute to the development of AMD. We hypothesize that defective lysosome-mediated clearance causes accumulation of waste products in the retinal pigmented epithelium (RPE), activating the immune system and leading to retinal tissue injury and AMD. We have generated unique genetically engineered mice in which lysosome-mediated clearance (both by phagocytosis and autophagy) in RPE cells is compromised, causing the development of features of early AMD. Our recent data indicate a link between lipocalin-2 (LCN-2) and the inflammatory responses induced in this mouse model. We show that nuclear factor-κB (NF-κB) and STAT-1 may function as a complex in our animal model system, together controlling the upregulation of LCN-2 expression in the retina and stimulating an inflammatory response. This study revealed increased infiltration of LCN-2-positive neutrophils in the choroid and retina of early AMD patients as compared with age-matched controls. Our results demonstrate that, both in our animal model and in human AMD, the AKT2-NF-κB-LCN-2 signalling axis is involved in activating the inflammatory response, making this pathway a potential target for AMD treatment. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Lipocalina 2/genética , Lisosomas/inmunología , Degeneración Macular/genética , FN-kappa B/genética , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal , Factores de Edad , Animales , Autofagia , Coroides/inmunología , Coroides/metabolismo , Modelos Animales de Enfermedad , Humanos , Inflamación , Lipocalina 2/metabolismo , Lisosomas/metabolismo , Degeneración Macular/inmunología , Degeneración Macular/patología , Ratones , FN-kappa B/metabolismo , Neutrófilos/inmunología , Fagocitosis , Proteínas Proto-Oncogénicas c-akt/metabolismo , Retina/inmunología , Retina/lesiones , Retina/metabolismo , Epitelio Pigmentado de la Retina/inmunología , Epitelio Pigmentado de la Retina/metabolismo , Regulación hacia Arriba
7.
Methods Mol Biol ; 2712: 179-186, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37578706

RESUMEN

Ferroptosis is a recently described process of cell death that is dependent on unregulated cellular iron accumulation with induction of oxidative stress. Ferroptosis has been linked to several human diseases; therefore, investigations aimed at better understanding the pathway and elucidating avenues for future drug development are warranted. Current assays that target ferroptosis/oxidative stress in cells is limited to western blotting and imaging techniques, and unfortunately provide only a broad understanding that is insufficient to effectively assess novel drugs (ligands). Specifically, these assays do not provide insights about ligand interactions with specific proteins associated with these processes. Herein, we discuss a cell-based thermal shift assay that enables screening of ligands under specific cellular conditions for targeting ferroptosis and/or oxidative stress pathways. These data would provide detailed preliminary evidence required for drug development that targets this pathway.


Asunto(s)
Ferroptosis , Humanos , Bioensayo , Western Blotting , Muerte Celular , Desarrollo de Medicamentos
8.
Sci Rep ; 13(1): 16935, 2023 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-37805660

RESUMEN

We present a general, trainable oscillatory neural network as a large-scale model of brain dynamics. The model has a cascade of two stages - an oscillatory stage and a complex-valued feedforward stage - for modelling the relationship between structural connectivity and functional connectivity from neuroimaging data under resting brain conditions. Earlier works of large-scale brain dynamics that used Hopf oscillators used linear coupling of oscillators. A distinctive feature of the proposed model employs a novel form of coupling known as power coupling. Oscillatory networks based on power coupling can accurately model arbitrary multi-dimensional signals. Training the lateral connections in the oscillator layer is done by a modified form of Hebbian learning, whereas a variation of the complex backpropagation algorithm does training in the second stage. The proposed model can not only model the empirical functional connectivity with remarkable accuracy (correlation coefficient between simulated and empirical functional connectivity- 0.99) but also identify default mode network regions. In addition, we also inspected how structural loss in the brain can cause significant aberration in simulated functional connectivity and functional connectivity dynamics; and how it can be restored with optimized model parameters by an in silico perturbational study.


Asunto(s)
Mapeo Encefálico , Modelos Neurológicos , Mapeo Encefálico/métodos , Vías Nerviosas , Encéfalo/diagnóstico por imagen , Neuroimagen , Imagen por Resonancia Magnética/métodos , Red Nerviosa/diagnóstico por imagen
9.
J Nutr Biochem ; 115: 109283, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36791995

RESUMEN

One of the key biochemical features that distinguish a cancer cell from normal cells is its persistent pro-oxidative state that leads to intrinsic oxidative stress. Malignant cells have evolved sophisticated adaptation systems that involve high dependency on antioxidant functions and upregulation of pro-survival molecules to counteract the deleterious effects of reactive species and to maintain dynamic redox balance. This situation renders them vulnerable to further oxidative challenges by exogenous agents. In the present study, we advocated that pomegranate polyphenols act as pro-oxidants and trigger ROS-mediated apoptosis in cancer cells. With the help of both in vitro and in vivo models, we have established that pomegranate fruit extract (PFE) can cause a significant reduction in tumor proliferation while leaving normal tissues and cells unharmed. Administration of PFE (0.2% v/v) in Erhlich's ascites carcinoma-bearing mice for 3 weeks, inhibited the nuclear factor (erythroid-derived 2)-like 2-antioxidant response element signaling cascade, increased intracellular reactive oxygen species content, altered glutathione cycle thereby activating reactive oxygen species-induced apoptotic pathway in Erhlich's ascites carcinoma cells. Moreover, PFE mitigated epithelial to mesenchymal transition and migration in triple negative breast cancer cells (MDA-MB 231 cells) by down-regulating nuclear factor kappa light-chain-enhancer of activated B cells. Pre-treatment of tumor cells with N-acetyl cysteine protected these cells from undergoing PFE-induced apoptosis while siRNA-mediated silencing of Nuclear factor (erythroid-derived 2)-like 2 and nuclear factor kappa light-chain-enhancer of activated B cells in tumor cells increased the cytotoxic potential and pro-oxidative activity of PFE, indicating a clear role of these transcription factors in orchestrating the anticancer/pro-oxidative properties of PFE. The seminal findings provided may be exploited to develop potential therapeutic targets for selective killing of malignant cells.


Asunto(s)
Carcinoma , Granada (Fruta) , Animales , Ratones , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/química , Especies Reactivas de Oxígeno/metabolismo , Frutas/química , Ascitis , Polifenoles/farmacología , Polifenoles/análisis , Transición Epitelial-Mesenquimal , Estrés Oxidativo , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Apoptosis
10.
Cells ; 12(20)2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37887340

RESUMEN

Mitochondrial dysfunction in astrocytes has been implicated in the development of various neurological disorders. Mitophagy, mitochondrial autophagy, is required for proper mitochondrial function by preventing the accumulation of damaged mitochondria. The importance of mitophagy, specifically in the astrocytes of the optic nerve (ON), has been little studied. We introduce an animal model in which two separate mutations act synergistically to produce severe ON degeneration. The first mutation is in Cryba1, which encodes ßA3/A1-crystallin, a lens protein also expressed in astrocytes, where it regulates lysosomal pH. The second mutation is in Bckdk, which encodes branched-chain ketoacid dehydrogenase kinase, which is ubiquitously expressed in the mitochondrial matrix and involved in the catabolism of the branched-chain amino acids. BCKDK is essential for mitochondrial function and the amelioration of oxidative stress. Neither of the mutations in isolation has a significant effect on the ON, but animals homozygous for both mutations (DM) exhibit very serious ON degeneration. ON astrocytes from these double-mutant (DM) animals have lysosomal defects, including impaired mitophagy, and dysfunctional mitochondria. Urolithin A can rescue the mitophagy impairment in DM astrocytes and reduce ON degeneration. These data demonstrate that efficient mitophagy in astrocytes is required for ON health and functional integrity.


Asunto(s)
Astrocitos , Mitofagia , Animales , Astrocitos/metabolismo , Lisosomas/metabolismo , Mitocondrias/metabolismo , Nervio Óptico/metabolismo
11.
Cell Death Discov ; 9(1): 243, 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37443129

RESUMEN

Diabetic Retinopathy (DR) is a complication of diabetes that causes blindness in adults. Retinal fibrosis is closely associated with developing proliferative diabetic retinopathy (PDR). Clinical studies have shown that fibrotic membranes exhibit uncontrolled growth in PDR and contribute to retinal detachment from RPE cells, ultimately leading to vision loss. While anti-VEGF agents and invasive laser treatments are the primary treatments for PDR, retinal fibrosis has received minimal attention as a potential target for therapeutic intervention. Therefore, to investigate the potential role of Akt2 in the diabetes-induced retinal fibrosis process, we generated RPE-specific Akt2 conditional knockout (cKO) mice and induced diabetes in these mice and Akt2fl/fl control mice by intraperitoneal injection of streptozotocin. After an 8-month duration of diabetes (10 months of age), the mice were euthanized and expression of tight junction proteins, epithelial-mesenchymal transition (EMT), and fibrosis markers were examined in the RPE. Diabetes induction in the floxed control mice decreased levels of the RPE tight junction protein ZO-1 and adherens junction proteins occludin and E-cadherin; these decreases were rescued in Akt2 cKO diabetic mice. Loss of Akt2 also inhibited diabetes-induced elevation of RNA and protein levels of the EMT markers Snail/Slug and Twist1 in the RPE as compared to Akt2fl/fl diabetic mice. We also found that in Akt2 cKO mice diabetes-induced increase of fibrosis markers, including collagen IV, Connective tissue growth factor (CTGF), fibronectin, and alpha-SMA was attenuated. Furthermore, we observed that high glucose-induced alterations in EMT and fibrosis markers in wild-type (WT) RPE explants were rescued in the presence of PI3K and ERK inhibitors, indicating diabetes-induced retinal fibrosis may be mediated via the PI3K/Akt2/ERK signaling, which could provide a novel target for DR therapy.

12.
Life Sci ; 314: 121290, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36549349

RESUMEN

AIM: Arsenic contamination in drinking water is a world-wide public health concern. Sustained arsenic ingestion leads to immune alterations and subsequent development of inflammatory and autoimmune diseases; however, the underlying cellular and molecular intricacies of immunotoxicity remains uncharacterized. We aim to understand how exposure to arsenic at different concentrations affects the immune system differentially and whether arsenic-induced differential inflammation dictates altered T-regulatory cell bias and emphasize the role of autophagy in the pathway. MAIN METHODS: Swiss albino mice were exposed to environmentally relevant concentrations of arsenic in drinking water for 28 days. Examination of thymic cyto-architecture was done to evaluate thymic damage. ELISA was performed for key cytokines. Flow cytometry, western blotting, and immunostaining were performed for cell surface and intracellular proteins. Co-immunoprecipitation and transfection with siRNA were performed to examine the direct physical interactions between proteins. KEY FINDINGS: Our study distinctly demonstrates that arsenic-induced oxidative stress instigates NF-κB activation, which not only provokes pro-inflammatory responses, but also exhibits immune-suppressive activity depending on the dose of arsenic. Co-immunoprecipitation of NF-κBp65 and pSTAT-3 reveals that arsenic alters their physical interaction, thereby suppressing IL-6/STAT-3/IL-17A feedback loop. Flow cytometry and silencing studies demonstrate that NF-κB-driven Treg cell differentiation induces immune-suppression through FoxP3 up-regulation at the highest dose of arsenic and such immune-suppression is actively supported by NF-κB-driven autophagy activation. SIGNIFICANCE: Collectively, our findings reveal that exposure to arsenic differentially impacts the immune system and understanding the molecular cascade might provide direction for prevention/treatment of arsenic-induced inflammatory and autoimmune diseases.


Asunto(s)
Arsénico , Enfermedades Autoinmunes , Agua Potable , Animales , Ratones , FN-kappa B/metabolismo , Arsénico/toxicidad , Linfocitos T Reguladores/metabolismo , Autofagia
13.
Cell Signal ; 101: 110521, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36375715

RESUMEN

The unending lifestyle stressors along with genetic predisposition, environmental factors and infections have pushed the immune system into a state of constant activity, leading to unresolved inflammation and increased vulnerability to chronic diseases. Liver fibrosis, an early-stage liver condition that increases the risk of developing liver diseases like cirrhosis and hepatocellular carcinoma, is among the various diseases linked to inflammation that dominate worldwide morbidity and mortality. We developed a mouse model with low-grade lipopolysaccharide (LPS) exposure that shows hepatic damage and a pro-inflammatory condition in the liver. We show that inflammation and oxidative changes increase autophagy in liver cells, a degradation process critical in maintaining cellular homeostasis. Our findings from in vivo and in vitro studies also show that induction of both inflammation and autophagy trigger epithelial-mesenchymal transition (EMT) and pro-fibrotic changes in hepatocytes. Inhibiting the inflammatory pathways with a naturally occurring NF-κB inhibitor and antioxidant, melatonin, could assuage the changes in autophagy and activation of EMT/fibrotic pathways in hepatocytes. Taken together, this study shows a pathway linking inflammation and autophagy which could be targeted for future drug development to delay the progression of liver fibrosis.


Asunto(s)
Neoplasias Hepáticas , Melatonina , Ratones , Animales , Transición Epitelial-Mesenquimal/genética , Melatonina/farmacología , Melatonina/metabolismo , Hepatocitos/metabolismo , Cirrosis Hepática/metabolismo , Hígado/metabolismo , Autofagia , Inflamación/metabolismo , Neoplasias Hepáticas/patología
14.
Autophagy ; 19(1): 92-111, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35473441

RESUMEN

In dry age-related macular degeneration (AMD), LCN2 (lipocalin 2) is upregulated. Whereas LCN2 has been implicated in AMD pathogenesis, the mechanism remains unknown. Here, we report that in retinal pigmented epithelial (RPE) cells, LCN2 regulates macroautophagy/autophagy, in addition to maintaining iron homeostasis. LCN2 binds to ATG4B to form an LCN2-ATG4B-LC3-II complex, thereby regulating ATG4B activity and LC3-II lipidation. Thus, increased LCN2 reduced autophagy flux. Moreover, RPE cells from cryba1 KO, as well as sting1 KO and Sting1Gt mutant mice (models with abnormal iron chelation), showed decreased autophagy flux and increased LCN2, indicative of CGAS- and STING1-mediated inflammasome activation. Live cell imaging of RPE cells with elevated LCN2 also showed a correlation between inflammasome activation and increased fluorescence intensity of the Liperfluo dye, indicative of oxidative stress-induced ferroptosis. Interestingly, both in human AMD patients and in mouse models with a dry AMD-like phenotype (cryba1 cKO and KO), the LCN2 homodimer variant is increased significantly compared to the monomer. Sub-retinal injection of the LCN2 homodimer secreted by RPE cells into NOD-SCID mice leads to retinal degeneration. In addition, we generated an LCN2 monoclonal antibody that neutralizes both the monomer and homodimer variants and rescued autophagy and ferroptosis activities in cryba1 cKO mice. Furthermore, the antibody rescued retinal function in cryba1 cKO mice as assessed by electroretinography. Here, we identify a molecular pathway whereby increased LCN2 elicits pathophysiology in the RPE, cells known to drive dry AMD pathology, thus providing a possible therapeutic strategy for a disease with no current treatment options.Abbreviations: ACTB: actin, beta; Ad-GFP: adenovirus-green fluorescent protein; Ad-LCN2: adenovirus-lipocalin 2; Ad-LCN2-GFP: adenovirus-LCN2-green fluorescent protein; LCN2AKT2: AKT serine/threonine kinase 2; AMBRA1: autophagy and beclin 1 regulator 1; AMD: age-related macular degeneration; ARPE19: adult retinal pigment epithelial cell line-19; Asp278: aspartate 278; ATG4B: autophagy related 4B cysteine peptidase; ATG4C: autophagy related 4C cysteine peptidase; ATG7: autophagy related 7; ATG9B: autophagy related 9B; BLOC-1: biogenesis of lysosomal organelles complex 1; BLOC1S1: biogenesis of lysosomal organelles complex 1 subunit 1; C57BL/6J: C57 black 6J; CGAS: cyclic GMP-AMP synthase; ChQ: chloroquine; cKO: conditional knockout; Cys74: cysteine 74; Dab2: DAB adaptor protein 2; Def: deferoxamine; DHE: dihydroethidium; DMSO: dimethyl sulfoxide; ERG: electroretinography; FAC: ferric ammonium citrate; Fe2+: ferrous; FTH1: ferritin heavy chain 1; GPX: glutathione peroxidase; GST: glutathione S-transferase; H2O2: hydrogen peroxide; His280: histidine 280; IFNL/IFNλ: interferon lambda; IL1B/IL-1ß: interleukin 1 beta; IS: Inner segment; ITGB1/integrin ß1: integrin subunit beta 1; KO: knockout; LC3-GST: microtubule associated protein 1 light chain 3-GST; C-terminal fusion; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; LCN2: lipocalin 2; mAb: monoclonal antibody; MDA: malondialdehyde; MMP9: matrix metallopeptidase 9; NLRP3: NLR family pyrin domain containing 3; NOD-SCID: nonobese diabetic-severe combined immunodeficiency; OS: outer segment; PBS: phosphate-buffered saline; PMEL/PMEL17: premelanosome protein; RFP: red fluorescent protein; rLCN2: recombinant LCN2; ROS: reactive oxygen species; RPE SM: retinal pigmented epithelium spent medium; RPE: retinal pigment epithelium; RSL3: RAS-selective lethal; scRNAseq: single-cell ribonucleic acid sequencing; SD-OCT: spectral domain optical coherence tomography; shRNA: small hairpin ribonucleic acid; SM: spent medium; SOD1: superoxide dismutase 1; SQSTM1/p62: sequestosome 1; STAT1: signal transducer and activator of transcription 1; STING1: stimulator of interferon response cGAMP interactor 1; TYR: tyrosinase; VCL: vinculin; WT: wild type.


Asunto(s)
Ferroptosis , Degeneración Macular , Animales , Humanos , Ratones , Anticuerpos Monoclonales , Autofagia/fisiología , Inflamasomas/metabolismo , Lipocalina 2/genética , Degeneración Macular/genética , Degeneración Macular/metabolismo , Degeneración Macular/patología , Ratones Endogámicos NOD , Ratones SCID , Nucleotidiltransferasas/metabolismo
15.
bioRxiv ; 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37609254

RESUMEN

Age-related macular degeneration (AMD), the leading cause of geriatric blindness, is a multi-factorial disease with retinal-pigmented epithelial (RPE) cell dysfunction as a central pathogenic driver. With RPE degeneration, lysosomal function is a core process that is disrupted. Transcription factors EB/E3 (TFEB/E3) tightly control lysosomal function; their disruption can cause aging disorders, such as AMD. Here, we show that induced pluripotent stem cells (iPSC)-derived RPE cells with the complement factor H variant [ CFH (Y402H)] have increased AKT2, which impairs TFEB/TFE3 nuclear translocation and lysosomal function. Increased AKT2 can inhibit PGC1α, which downregulates SIRT5, an AKT2 binding partner. SIRT5 and AKT2 co-regulate each other, thereby modulating TFEB-dependent lysosomal function in the RPE. Failure of the AKT2/SIRT5/TFEB pathway in the RPE induced abnormalities in the autophagy-lysosome cellular axis by upregulating secretory autophagy, thereby releasing a plethora of factors that likely contribute to drusen formation, a hallmark of AMD. Finally, overexpressing AKT2 in RPE cells in mice led to an AMD-like phenotype. Thus, targeting the AKT2/SIRT5/TFEB pathway could be a potential therapy for atrophic AMD.

16.
JCI Insight ; 8(12)2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37345657

RESUMEN

Diabetic retinopathy (DR) is a leading cause of blindness in working-age adults and remains an important public health issue worldwide. Here we demonstrate that the expression of stimulator of interferon genes (STING) is increased in patients with DR and animal models of diabetic eye disease. STING has been previously shown to regulate cell senescence and inflammation, key contributors to the development and progression of DR. To investigate the mechanism whereby STING contributes to the pathogenesis of DR, diabetes was induced in STING-KO mice and STINGGT (loss-of-function mutation) mice, and molecular alterations and pathological changes in the retina were characterized. We report that retinal endothelial cell senescence, inflammation, and capillary degeneration were all inhibited in STING-KO diabetic mice; these observations were independently corroborated in STINGGT mice. These protective effects resulted from the reduction in TBK1, IRF3, and NF-κB phosphorylation in the absence of STING. Collectively, our results suggest that targeting STING may be an effective therapy for the early prevention and treatment of DR.


Asunto(s)
Diabetes Mellitus Experimental , Retinopatía Diabética , Animales , Ratones , Retinopatía Diabética/genética , Células Endoteliales , Nucleotidiltransferasas/genética , Inflamación , Senescencia Celular , Cromogranina A
17.
Cells ; 11(22)2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36428965

RESUMEN

In dry age-related macular degeneration (AMD), inflammation plays a key role in disease pathogenesis. Innate immune cells such as microglia and neutrophils infiltrate the sub-retinal space (SRS) to induce chronic inflammation and AMD progression. But a major gap in our understanding is how these cells interact with each other in AMD. Here, we report a novel concept of how dynamic interactions between microglia and neutrophils contribute to AMD pathology. Using well-characterized genetically engineered mouse models as tools, we show that in the diseased state, retinal pigmented epithelial (RPE) cells trigger pro-inflammatory (M1) transition in microglia with diminished expression of the homeostatic marker, CX3CR1. Activated microglia localize to the SRS and regulate local neutrophil function, triggering their activation and thereby inducing early RPE changes. Ligand receptor (LR)-loop analysis and cell culture studies revealed that M1 microglia also induce the expression of neutrophil adhesion mediators (integrin ß1/α4) through their interaction with CD14 on microglia. Furthermore, microglia-induced neutrophil activation and subsequent neutrophil-mediated RPE alterations were mitigated by inhibiting Akt2 in microglia. These results suggest that the Akt2 pathway in microglia drives M1 microglia-mediated neutrophil activation, thereby triggering early RPE degeneration and is a novel therapeutic target for early AMD, a stage without treatment options.


Asunto(s)
Degeneración Macular , Neutrófilos , Ratones , Animales , Neutrófilos/metabolismo , Microglía/metabolismo , Degeneración Macular/metabolismo , Modelos Animales de Enfermedad , Inflamación/patología
18.
Nat Commun ; 13(1): 6045, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36229454

RESUMEN

The retinal pigment epithelium (RPE) plays an important role in the development of diabetic retinopathy (DR), a leading cause of blindness worldwide. Here we set out to explore the role of Akt2 signaling-integral to both RPE homeostasis and glucose metabolism-to DR. Using human tissue and genetically manipulated mice (including RPE-specific conditional knockout (cKO) and knock-in (KI) mice), we investigate whether Akts in the RPE influences DR in models of diabetic eye disease. We found that Akt1 and Akt2 activities were reciprocally regulated in the RPE of DR donor tissue and diabetic mice. Akt2 cKO attenuated diabetes-induced retinal abnormalities through a compensatory upregulation of phospho-Akt1 leading to an inhibition of vascular injury, inflammatory cytokine release, and infiltration of immune cells mediated by the GSK3ß/NF-κB signaling pathway; overexpression of Akt2 has no effect. We propose that targeting Akt1 activity in the RPE may be a novel therapy for treating DR.


Asunto(s)
Diabetes Mellitus Experimental , Retinopatía Diabética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Citocinas/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Retinopatía Diabética/etiología , Células Epiteliales/metabolismo , Glucosa/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Ratones , FN-kappa B/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Pigmentos Retinianos/metabolismo
19.
J Nutr Biochem ; 97: 108812, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34224820

RESUMEN

It has been widely reported that cancer, along with its treatment regimens, cause severe toxicity in the host. A suitable agent having chemopreventive properties as well as capabilities of ameliorating tumor- and drug-induced toxicities is of imminent need. Pomegranate has been projected as an excellent anti-tumor, anti-inflammatory and anti-oxidant agent. In this study, for the first time, we delineated the exact signaling cascade by which dietary supplementation of pomegranate fruit extract (PFE) protects tumor-bearing mice from tumor-induced hepatotoxicity. Increased activities of serum Alanine transaminase, Aspartate transaminase, Lactate dehydrogenase and Alkaline phosphatase, as well as histological studies confirmed the establishment of a state of hepatic dysfunction in tumor-bearers. Further investigations revealed that increased hepatic reactive oxygen species content and glutathione depletion-initiated apoptosis in these hepatocytes as we observed an alteration in the apoptotic proteins. PFE supplementation in tumor-bearing mice, on the other hand, differentially modulated redox-sensitive transcription factors Nrf2 and NF-κB, ultimately decreasing tumor-induced hepatic oxidative damage and cell death. siRNA-mediated inhibition of Nrf2 and NF-κB completely abolished the hepato-protective activities of PFE while pre-treatment of tumor-conditioned hepatocytes with N-acetyl cysteine augmented the cyto-protective properties of PFE. The present study clearly identified Nrf2/NF-κB/glutathione axis as the key factor behind the hepatoprotective potential of PFE. These findings would add to the existing knowledge about cancer chemoprevention by dietary polyphenols and might lead to the application of pomegranate polyphenols as supplement to escalate the effectiveness of cancer therapy by protecting normal cells from cancer related toxicities.


Asunto(s)
Carcinoma de Ehrlich/complicaciones , Glutatión/metabolismo , Hepatopatías/prevención & control , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Polifenoles/administración & dosificación , Granada (Fruta) , Animales , Antioxidantes/metabolismo , Carcinoma de Ehrlich/metabolismo , Citocinas/metabolismo , Suplementos Dietéticos , Femenino , Hepatocitos/fisiología , Inflamación , Hígado/metabolismo , Hepatopatías/etiología , Hepatopatías/metabolismo , Hepatopatías/patología , Ratones , Estrés Oxidativo , Extractos Vegetales/administración & dosificación
20.
J Clin Res Pediatr Endocrinol ; 13(4): 456-460, 2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-32936763

RESUMEN

Isolated growth hormone deficiency (IGHD) type 1A is a rare, autosomal recessive disorder caused by deletion of the GH1 gene and characterized by early onset severe short stature and typical phenotype. Lack of exposure to GH during fetal life often leads to formation of anti-GH antibody following exposure even the least immunogenic recombinant human GH (rhGH). Some patients with circulating anti-GH antibodies demonstrate lack of growth response to GH while others do not. However, the clinical significance of this antibody is unclear; hence testing is not routinely recommended. Three siblings, born of a consanguineous union, were referred with severe short stature. They were evaluated and IGHD was diagnosed in all of them. Genetic analysis revealed that all three had homozygous 6.7 Kb deletion in GH1 gene, while their parents displayed a pattern of heterozygous 6.7 Kb deletions. rhGH was started at 10, 6 and 1.58 years of age, respectively. Growth and hormonal parameters were monitored throughout the course of treatment. The eldest sibling demonstrated expected growth velocity (9.5 cm/year) for the first year of rhGH that rapidly waned thereafter (2.5 cm/year). The youngest sibling experienced excellent growth response even after the third year (10.3 cm/year) while the middle sibling displayed sub-optimal response from rhGH initiation (6.3 cm/year). Change of rhGH brand did not work in the two elder sisters. Such a different growth response with rhGH in three siblings harbouring similar genetic abnormality has not been described previously.


Asunto(s)
Enanismo Hipofisario/tratamiento farmacológico , Enanismo Hipofisario/genética , Hormona de Crecimiento Humana/genética , Hormona de Crecimiento Humana/farmacología , Niño , Consanguinidad , Femenino , Humanos , Lactante , Linaje , Proteínas Recombinantes , Eliminación de Secuencia , Hermanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA