RESUMEN
B-cell non-Hodgkin lymphoma (B-NHL) encompasses multiple clinically and phenotypically distinct subtypes of malignancy with unique molecular etiologies. Common subtypes of B-NHL, such as diffuse large B-cell lymphoma, have been comprehensively interrogated at the genomic level, but rarer subtypes, such as mantle cell lymphoma, remain less extensively characterized. Furthermore, multiple B-NHL subtypes have thus far not been comprehensively compared using the same methodology to identify conserved or subtype-specific patterns of genomic alterations. Here, we employed a large targeted hybrid-capture sequencing approach encompassing 380 genes to interrogate the genomic landscapes of 685 B-NHL tumors at high depth, including diffuse large B-cell lymphoma, mantle cell lymphoma, follicular lymphoma, and Burkitt lymphoma. We identified conserved hallmarks of B-NHL that were deregulated in the majority of tumors from each subtype, including frequent genetic deregulation of the ubiquitin proteasome system. In addition, we identified subtype-specific patterns of genetic alterations, including clusters of co-occurring mutations and DNA copy number alterations. The cumulative burden of mutations within a single cluster were more discriminatory of B-NHL subtypes than individual mutations, implicating likely patterns of genetic cooperation that contribute to disease etiology. We therefore provide the first cross-sectional analysis of mutations and DNA copy number alterations across major B-NHL subtypes and a framework of co-occurring genetic alterations that deregulate genetic hallmarks and likely cooperate in lymphomagenesis.
Asunto(s)
Linfoma de Burkitt , Linfoma Folicular , Linfoma de Células B Grandes Difuso , Adulto , Estudios Transversales , Humanos , Linfoma Folicular/genética , MutaciónRESUMEN
Malaria parasites (Plasmodium spp.) and related apicomplexan pathogens contain a nonphotosynthetic plastid called the apicoplast. Derived from an unusual secondary eukaryote-eukaryote endosymbiosis, the apicoplast is a fascinating organelle whose function and biogenesis rely on a complex amalgamation of bacterial and algal pathways. Because these pathways are distinct from the human host, the apicoplast is an excellent source of novel antimalarial targets. Despite its biomedical importance and evolutionary significance, the absence of a reliable apicoplast proteome has limited most studies to the handful of pathways identified by homology to bacteria or primary chloroplasts, precluding our ability to study the most novel apicoplast pathways. Here, we combine proximity biotinylation-based proteomics (BioID) and a new machine learning algorithm to generate a high-confidence apicoplast proteome consisting of 346 proteins. Critically, the high accuracy of this proteome significantly outperforms previous prediction-based methods and extends beyond other BioID studies of unique parasite compartments. Half of identified proteins have unknown function, and 77% are predicted to be important for normal blood-stage growth. We validate the apicoplast localization of a subset of novel proteins and show that an ATP-binding cassette protein ABCF1 is essential for blood-stage survival and plays a previously unknown role in apicoplast biogenesis. These findings indicate critical organellar functions for newly discovered apicoplast proteins. The apicoplast proteome will be an important resource for elucidating unique pathways derived from secondary endosymbiosis and prioritizing antimalarial drug targets.
Asunto(s)
Apicoplastos/metabolismo , Biología Computacional/métodos , Malaria/metabolismo , Malaria/parasitología , Parásitos/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Proteínas Protozoarias/metabolismo , Algoritmos , Animales , Bases de Datos de Proteínas , Retículo Endoplásmico/metabolismo , Plasmodium falciparum/metabolismoRESUMEN
Plasmodium parasites must invade erythrocytes in order to cause the disease malaria. The invasion process involves the coordinated secretion of parasite proteins from apical organelles that include the rhoptries. The rhoptry is comprised of two compartments: the neck and the bulb. Rhoptry neck proteins are involved in host cell adhesion and formation of the tight junction that forms between the invading parasite and erythrocyte, whereas the role of rhoptry bulb proteins remains ill-defined due to the lack of functional studies. In this study, we show that the rhoptry-associated protein (RAP) complex is not required for rhoptry morphology or erythrocyte invasion. Instead, post-invasion when the parasite is bounded by a parasitophorous vacuolar membrane (PVM), the RAP complex facilitates the survival of the parasite in its new intracellular environment. Consequently, conditional knockdown of members of the RAP complex leads to altered PVM structure, delayed intra-erythrocytic growth, and reduced parasitaemias in infected mice. This study provides evidence that rhoptry bulb proteins localising to the parasite-host cell interface are not simply by-products of the invasion process but contribute to the growth of Plasmodium in vivo.
Asunto(s)
Eritrocitos/parasitología , Interacciones Huésped-Patógeno , Plasmodium berghei/fisiología , Proteínas Protozoarias/metabolismo , Vacuolas/parasitología , Factores de Virulencia/metabolismo , Animales , Modelos Animales de Enfermedad , Malaria/parasitología , Ratones Endogámicos BALB CRESUMEN
Export of most malaria proteins into the erythrocyte cytosol requires the Plasmodium translocon of exported proteins (PTEX) and a cleavable Plasmodium export element (PEXEL). In contrast, the contribution of PTEX in the liver stages and export of liver stage proteins is unknown. Here, using the FLP/FRT conditional mutatagenesis system, we generate transgenic Plasmodium berghei parasites deficient in EXP2, the putative pore-forming component of PTEX. Our data reveal that EXP2 is important for parasite growth in the liver and critical for parasite transition to the blood, with parasites impaired in their ability to generate a patent blood-stage infection. Surprisingly, whilst parasites expressing a functional PTEX machinery can efficiently export a PEXEL-bearing GFP reporter into the erythrocyte cytosol during a blood stage infection, this same reporter aggregates in large accumulations within the confines of the parasitophorous vacuole membrane during hepatocyte growth. Notably HSP101, the putative molecular motor of PTEX, could not be detected during the early liver stages of infection, which may explain why direct protein translocation of this soluble PEXEL-bearing reporter or indeed native PEXEL proteins into the hepatocyte cytosol has not been observed. This suggests that PTEX function may not be conserved between the blood and liver stages of malaria infection.
Asunto(s)
Malaria/parasitología , Plasmodium berghei/patogenicidad , Proteínas Protozoarias/metabolismo , Animales , Animales Modificados Genéticamente , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Choque Térmico/metabolismo , Interacciones Huésped-Parásitos , Hígado/parasitología , Ratones , Plasmodium berghei/genética , Transporte de Proteínas/genética , Proteínas Protozoarias/genética , Tetraciclinas/farmacologíaRESUMEN
Autologous chimeric antigen receptor (CAR) T cell therapies targeting CD19 have high efficacy in large B cell lymphomas (LBCLs), but long-term remissions are observed in less than half of patients, and treatment-associated adverse events, such as immune effector cell-associated neurotoxicity syndrome (ICANS), are a clinical challenge. We performed single-cell RNA sequencing with capture-based cell identification on autologous axicabtagene ciloleucel (axi-cel) anti-CD19 CAR T cell infusion products to identify transcriptomic features associated with efficacy and toxicity in 24 patients with LBCL. Patients who achieved a complete response by positron emission tomography/computed tomography at their 3-month follow-up had three-fold higher frequencies of CD8 T cells expressing memory signatures than patients with partial response or progressive disease. Molecular response measured by cell-free DNA sequencing at day 7 after infusion was significantly associated with clinical response (P = 0.008), and a signature of CD8 T cell exhaustion was associated (q = 2.8 × 10-149) with a poor molecular response. Furthermore, a rare cell population with monocyte-like transcriptional features was associated (P = 0.0002) with high-grade ICANS. Our results suggest that heterogeneity in the cellular and molecular features of CAR T cell infusion products contributes to variation in efficacy and toxicity after axi-cel therapy in LBCL, and that day 7 molecular response might serve as an early predictor of CAR T cell efficacy.
Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/efectos adversos , Linfoma de Células B Grandes Difuso/terapia , Receptores de Antígenos de Linfocitos T/uso terapéutico , Adulto , Anciano , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Ácidos Nucleicos Libres de Células/sangre , Femenino , Humanos , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/inmunología , Linfoma de Células B Grandes Difuso/patología , Masculino , Persona de Mediana Edad , Síndromes de Neurotoxicidad/etiología , RNA-Seq , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Análisis de la Célula Individual , Transcriptoma/genéticaRESUMEN
CREBBP mutations are highly recurrent in B-cell lymphomas and either inactivate its histone acetyltransferase (HAT) domain or truncate the protein. Herein, we show that these two classes of mutations yield different degrees of disruption of the epigenome, with HAT mutations being more severe and associated with inferior clinical outcome. Genes perturbed by CREBBP mutation are direct targets of the BCL6-HDAC3 onco-repressor complex. Accordingly, we show that HDAC3-selective inhibitors reverse CREBBP-mutant aberrant epigenetic programming, resulting in: (i) growth inhibition of lymphoma cells through induction of BCL6 target genes such as CDKN1A and (ii) restoration of immune surveillance due to induction of BCL6-repressed IFN pathway and antigen-presenting genes. By reactivating these genes, exposure to HDAC3 inhibitors restored the ability of tumor-infiltrating lymphocytes to kill DLBCL cells in an MHC class I and II-dependent manner, and synergized with PD-L1 blockade in a syngeneic model in vivo. Hence, HDAC3 inhibition represents a novel mechanism-based immune epigenetic therapy for CREBBP-mutant lymphomas. SIGNIFICANCE: We have leveraged the molecular characterization of different types of CREBBP mutations to define a rational approach for targeting these mutations through selective inhibition of HDAC3. This represents an attractive therapeutic avenue for targeting synthetic vulnerabilities in CREBBP-mutant cells in tandem with promoting antitumor immunity.This article is highlighted in the In This Issue feature, p. 327.
Asunto(s)
Proteína de Unión a CREB/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Histona Desacetilasas/genética , Linfoma/genética , Proteínas Proto-Oncogénicas c-bcl-6/genética , Animales , Células Presentadoras de Antígenos/efectos de los fármacos , Células Presentadoras de Antígenos/inmunología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Antígeno B7-H1/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Epigenoma/genética , Epigenoma/inmunología , Genes MHC Clase I/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Histona Acetiltransferasas/genética , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/efectos de los fármacos , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Sistema Inmunológico/efectos de los fármacos , Sistema Inmunológico/inmunología , Interferones/genética , Interferones/inmunología , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/inmunología , Linfoma/tratamiento farmacológico , Linfoma/inmunología , Linfoma/patología , Ratones , Mutación/genética , Transducción de Señal/efectos de los fármacosRESUMEN
The ability of Plasmodium parasites to egress from their host red blood cell is critical for the amplification of these parasites in the blood. Previous forward chemical genetic approaches have implicated the subtilisin-like protease (SUB1) and the cysteine protease dipeptidyl aminopeptidase 3 (DPAP3) as key players in egress, with the final step of SUB1 maturation thought to be due to the activity of DPAP3. In this study, we have utilized a reverse genetics approach to engineer transgenic Plasmodium falciparum parasites in which dpap3 expression can be conditionally regulated using the glmS ribozyme based RNA-degrading system. We show that DPAP3, which is expressed in schizont stages and merozoites and localizes to organelles distinct from the micronemes, rhoptries and dense granules, is not required for the trafficking of apical proteins or processing of SUB1 substrates, nor for parasite maturation and egress from red blood cells. Thus, our findings argue against a role for DPAP3 in parasite egress and indicate that the phenotypes observed with DPAP3 inhibitors are due to off-target effects.
Asunto(s)
Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Eritrocitos/parasitología , Plasmodium falciparum/enzimología , Western Blotting , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/genética , Técnica del Anticuerpo Fluorescente Indirecta , Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Microscopía Inmunoelectrónica , Orgánulos/enzimología , Organismos Modificados Genéticamente , Plasmodium falciparum/genética , Plasmodium falciparum/crecimiento & desarrollo , Transporte de Proteínas/fisiología , Proteínas Protozoarias/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Subtilisinas/metabolismoRESUMEN
Plasmodium falciparum parasites, the causative agents of malaria, modify their host erythrocyte to render them permeable to supplementary nutrient uptake from the plasma and for removal of toxic waste. Here we investigate the contribution of the rhoptry protein RhopH2, in the formation of new permeability pathways (NPPs) in Plasmodium-infected erythrocytes. We show RhopH2 interacts with RhopH1, RhopH3, the erythrocyte cytoskeleton and exported proteins involved in host cell remodeling. Knockdown of RhopH2 expression in cycle one leads to a depletion of essential vitamins and cofactors and decreased de novo synthesis of pyrimidines in cycle two. There is also a significant impact on parasite growth, replication and transition into cycle three. The uptake of solutes that use NPPs to enter erythrocytes is also reduced upon RhopH2 knockdown. These findings provide direct genetic support for the contribution of the RhopH complex in NPP activity and highlight the importance of NPPs to parasite survival.
Asunto(s)
Eritrocitos/parasitología , Interacciones Huésped-Patógeno , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Animales , Citoesqueleto/metabolismo , Humanos , Ratones , Pirimidinas/metabolismo , Vitaminas/metabolismoRESUMEN
Pathogenesis of malaria infections is linked to remodeling of erythrocytes, a process dependent on the trafficking of hundreds of parasite-derived proteins into the host erythrocyte. Recent studies have demonstrated that the Plasmodium translocon of exported proteins (PTEX) serves as the central gateway for trafficking of these proteins, as inducible knockdown of the core PTEX constituents blocked the trafficking of all classes of cargo into the erythrocyte. However, the role of the auxiliary component PTEX88 in protein export remains less clear. Here we have used inducible knockdown technologies in P. falciparum and P. berghei to assess the role of PTEX88 in parasite development and protein export, which reveal that the in vivo growth of PTEX88-deficient parasites is hindered. Interestingly, we were unable to link this observation to a general defect in export of a variety of known parasite proteins, suggesting that PTEX88 functions in a different fashion to the core PTEX components. Strikingly, PTEX88-deficient P. berghei were incapable of causing cerebral malaria despite a robust pro-inflammatory response from the host. These parasites also exhibited a reduced ability to sequester in peripheral tissues and were removed more readily from the circulation by the spleen. In keeping with these findings, PTEX88-deficient P. falciparum-infected erythrocytes displayed reduced binding to the endothelial cell receptor, CD36. This suggests that PTEX88 likely plays a specific direct or indirect role in mediating parasite sequestration rather than making a universal contribution to the trafficking of all exported proteins.
Asunto(s)
Técnicas de Silenciamiento del Gen , Parásitos/patogenicidad , Plasmodium berghei/patogenicidad , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/metabolismo , Animales , Antígenos CD36/metabolismo , Adhesión Celular , Femenino , Glucosamina/metabolismo , Inmunidad , Inflamación/inmunología , Inflamación/patología , Ratones Endogámicos C57BL , Parásitos/crecimiento & desarrollo , Unión Proteica , Transporte de Proteínas , VirulenciaRESUMEN
Rheumatoid arthritis (RA) is a chronic, autoimmune, systemic and inflammatory rheumatic disease that leads to inflammation of the joints and surrounding tissues. Identification of novel protein(s) associated with severity of RA is a prerequisite for better understanding of pathogenesis of this disease that may also have potential to serve as novel biomarkers in the diagnosis of RA. Present study was undertaken to compare the amount of autoantigens and autoantibodies in the plasma of RA patients in comparison to healthy controls. Plasma samples were collected from the patients suffering from RA, Osteoarthritis (OA), Systemic lupus erythematosus (SLE) and healthy volunteers. The screening of plasma proteins were carried out using 2-dimensional gel electrophoresis followed by identification of differentially expressed protein by MALDI-TOF MS/MS. Among several differentially expressed proteins, transthyretin (TTR) has been identified as one of the protein that showed significantly up regulated expression in the plasma of RA patients. The results were further validated by Western blot analysis and ELISA. In comparison to OA synovium, an exclusive significantly high expression of TTR in RA has been validated through IHC, Western blotting and IEM studies. Most importantly, the increase in expression of TTR with the progression of severity of RA condition has been observed. The autoantibodies against TTR present in the RA plasma were identified using immunoprecipitation-Western methods. The significant production of autoantibodies was validated by ELISA and Western blot analysis using recombinant pure protein of TTR. Hence, these novel observations on increase in TTR expression with the increase in severity of RA conditions and significant production of autoantibodies against TTR clearly suggest that a systematic studies on the role TTR in the pathogenesis of RA is immediately required and TTR may be used as a serum diagnostic marker together with other biochemical parameters and clinical symptoms for RA screening and diagnosis.