Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Equity Health ; 23(1): 88, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693504

RESUMEN

BACKGROUND: Internally displaced people (IDP) in Iraq are 1.2 million (as March 2023). Protracted refugee status endangers the mental health, especially of minorities who survived persecution and conflict, such as the Yazidis. This study aims to identify the mental health needs of Yazidi adolescents and young adults (AYA) in the IDP camp of Bajed Kandala (Iraqi Kurdistan). METHODS: A focus group discussion (FGD) study was conducted between April and August 2022. The FGDs involved AYAs, as well as the staff of the clinic of the Bajed Kandala camp. An inductive approach was adopted referring to the 'theme' as the unit of content analysis of the text. All FGDs were recorded and transcribed. The analysis was carried out independently by two researchers. The inter-rater agreement was assessed through the Cohen's k. RESULTS: A total of 6 FGDs were conducted. The participants were 34 of whom 21 (61.8%) females with a median age of 18.5 years (IQR 17.0-21.0). A total of 156 themes were found as relevant to the objective of this study. Four main areas and twelve subareas of needs in mental health were identified. The interrater agreement over the main area and subareas was good (κ = 0.78 [0.95CI 0.69-0.88], κ = 0.82 [0.95CI 0.73-0.91], respectively). The four areas had a similar frequency: Activities (28.2%), Individual (27.6%), Social relationships (22.4%) and Places/setting (21.8%). The subareas 'community' and 'internal resources' were labelled as negative 85.7% and 61.9% of the time, respectively. These sub-areas referred to stigma and self-stigma towards mental health. The subarea 'female condition' was always considered as negative, as well as the subareas 'camp' and 'tent' referring to housing as an important social determinant of mental health. CONCLUSIONS: Community stigma and self-stigma are two still important factors preventing the achievement of mental well-being. Alongside these, a gender gap in mental health was identified in the FGDs. These factors should be taken into account in order to guide future mental health interventions in refugee camps.


Asunto(s)
Grupos Focales , Salud Mental , Refugiados , Humanos , Femenino , Adolescente , Masculino , Irak , Adulto Joven , Refugiados/psicología , Evaluación de Necesidades , Adulto , Necesidades y Demandas de Servicios de Salud
2.
J Cell Mol Med ; 27(6): 819-830, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36824025

RESUMEN

Obstructive sleep apnoea syndrome (OSAS) is a sleep-disordered breathing characterized by nocturnal collapses of the upper airway resulting in cycles of blood oxygen partial pressure oscillations, which lead to tissue and cell damage due to intermittent hypoxia (IH) episodes. Since OSAS-derived IH may lead to cognitive impairment through not fully cleared mechanisms, herein we developed a new in vitro model mimicking IH conditions to shed light on its molecular effects on microglial cells, with particular attention to the inflammatory response. The in vitro model was set-up and validated by measuring the hypoxic state, HIF-1α levels, oxidative stress by ROS production and mitochondrial activity by MTS assay. Then, the mRNA and protein levels of certain inflammatory markers (NF-κB and interleukin 6 (IL-6)) after different IH treatment protocols were investigated. The IH treatments followed by a normoxic period were not able to produce a high inflammatory state in human microglial cells. Nevertheless, microglia appeared to be in a state characterized by increased expression of NF-κB and markers related to a primed phenotype. The microglia exposed to IH cycles and stimulated with exogenous IL-1ß resulted in an exaggerated inflammatory response with increased NF-κB and IL-6 expression, suggesting a role for primed microglia in OSAS-driven neuroinflammation.


Asunto(s)
Microglía , Apnea Obstructiva del Sueño , Humanos , Microglía/metabolismo , Interleucina-6/metabolismo , FN-kappa B/metabolismo , Hipoxia/metabolismo , Apnea Obstructiva del Sueño/metabolismo
3.
Biochem Soc Trans ; 49(4): 1791-1802, 2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34415299

RESUMEN

Microglia are the major component of the innate immune system in the central nervous system. They promote the maintenance of brain homeostasis as well as support inflammatory processes that are often related to pathological conditions such as neurodegenerative diseases. Depending on the stimulus received, microglia cells dynamically change their phenotype releasing specific soluble factors and largely modify the cargo of their secreted extracellular vesicles (EVs). Despite the mechanisms at the basis of microglia actions have not been completely clarified, the recognized functions exerted by their EVs in patho-physiological conditions represent the proof of the crucial role of these organelles in tuning cell-to-cell communication, promoting either protective or harmful effects. Consistently, in vitro cell models to better elucidate microglia EV production and mechanisms of their release have been increased in the last years. In this review, the main microglial cellular models that have been developed and validated will be described and discussed, with particular focus on those used to produce and derive EVs. The advantages and disadvantages of their use will be evidenced too. Finally, given the wide interest in applying EVs in diagnosis and therapy too, the heterogeneity of available models for producing microglia EVs is here underlined, to prompt a cross-check or comparison among them.


Asunto(s)
Vesículas Extracelulares/metabolismo , Microglía/metabolismo , Modelos Biológicos , Animales , Línea Celular , Humanos , Sanguijuelas
4.
Biochem Soc Trans ; 49(4): 1779-1790, 2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34415305

RESUMEN

Extracellular vesicles (EVs) are a heterogeneous family of cell-derived lipid bounded vesicles comprising exosomes and microvesicles. They are potentially produced by all types of cells and are used as a cell-to-cell communication method that allows protein, lipid, and genetic material exchange. Microglia cells produce a large number of EVs both in resting and activated conditions, in the latter case changing their production and related biological effects. Several actions of microglia in the central nervous system are ascribed to EVs, but the molecular mechanisms by which each effect occurs are still largely unknown. Conflicting functions have been ascribed to microglia-derived EVs starting from the neuronal support and ending with the propagation of inflammation and neurodegeneration, confirming the crucial role of these organelles in tuning brain homeostasis. Despite the increasing number of studies reported on microglia-EVs, there is also a lot of fragmentation in the knowledge on the mechanism at the basis of their production and modification of their cargo. In this review, a collection of literature data about the surface and cargo proteins and lipids as well as the miRNA content of EVs produced by microglial cells has been reported. A special highlight was given to the works in which the EV molecular composition is linked to a precise biological function.


Asunto(s)
Vesículas Extracelulares/metabolismo , Microglía/metabolismo , Animales , Humanos , Metabolismo de los Lípidos , MicroARNs/metabolismo , Proteínas/metabolismo
5.
BMC Cancer ; 21(1): 1296, 2021 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-34863149

RESUMEN

BACKGROUND: Triple negative breast cancer (TNBC) is the most aggressive subtype of breast cancer (BC). Treatment options for TNBC patients are limited and further insights into disease aetiology are needed to develop better therapeutic approaches. microRNAs' ability to regulate multiple targets could hold a promising discovery approach to pathways relevant for TNBC aggressiveness. Thus, we address the role of miRNAs in controlling three signalling pathways relevant to the biology of TNBC, and their downstream phenotypes. METHODS: To identify miRNAs regulating WNT/ß-catenin, c-Met, and integrin signalling pathways, we performed a high-throughput targeted proteomic approach, investigating the effect of 800 miRNAs on the expression of 62 proteins in the MDA-MB-231 TNBC cell line. We then developed a novel network analysis, Pathway Coregulatory (PC) score, to detect miRNAs regulating these three pathways. Using in vitro assays for cell growth, migration, apoptosis, and stem-cell content, we validated the function of candidate miRNAs. Bioinformatic analyses using BC patients' datasets were employed to assess expression of miRNAs as well as their pathological relevance in TNBC patients. RESULTS: We identified six candidate miRNAs coordinately regulating the three signalling pathways. Quantifying cell growth of three TNBC cell lines upon miRNA gain-of-function experiments, we characterised miR-193b as a strong and consistent repressor of proliferation. Importantly, the effects of miR-193b were stronger than chemical inhibition of the individual pathways. We further demonstrated that miR-193b induced apoptosis, repressed migration, and regulated stem-cell markers in MDA-MB-231 cells. Furthermore, miR-193b expression was the lowest in patients classified as TNBC or Basal compared to other subtypes. Gene Set Enrichment Analysis showed that miR-193b expression was significantly associated with reduced activity of WNT/ß-catenin and c-Met signalling pathways in TNBC patients. CONCLUSIONS: Integrating miRNA-mediated effects and protein functions on networks, we show that miRNAs predominantly act in a coordinated fashion to activate or repress connected signalling pathways responsible for metastatic traits in TNBC. We further demonstrate that our top candidate, miR-193b, regulates these phenotypes to an extent stronger than individual pathway inhibition, thus emphasizing that its effect on TNBC aggressiveness is mediated by the coordinated repression of these functionally interconnected pathways.


Asunto(s)
MicroARNs/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Vía de Señalización Wnt/genética , beta Catenina/metabolismo , Línea Celular Tumoral , Proliferación Celular , Humanos , Metástasis de la Neoplasia , Transfección
6.
Planta Med ; 87(10-11): 879-891, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33860477

RESUMEN

Five new compounds, a flavonol glycoside ( 1: ), a megastigmane ( 2: ), 2 cyclohexylethanoids ( 3, 4: ), and a phenylethanoid derivative ( 5: ), together with 15 known compounds ( 6: - 20: ) including flavonoid glycosides, cyclohexylethanoids, and phenolic compounds, have been isolated from Cornus sanguinea drupes. All the structures have been determined by 1D and 2D NMR spectroscopic analysis and mass spectrometry data. The antioxidant capability of the most representative isolated compounds was evaluated in the hydrogen peroxide (H2O2)-induced premature cellular senescence model of human dermal and gingival fibroblasts. Several derivatives counteracted the increase of reactive oxigen species (ROS) production in both cellular models. Among the most promising, compounds 8, 14: , and 20: were able to counteract cell senescence, decreasing the expression of p21 and p53. Furthermore, compound 14: decreased the expression of inflammatory cytokines (IL-6) in both cell models and counteracted the decrease of collagen expression induced by the H2O2 in dermal human fibroblasts. These data highlight the anti-aging properties of several isolated compounds from C. sanguinea drupes, supporting its possible use in the cure of skin or periodontitis lesions.


Asunto(s)
Antioxidantes , Cornus , Antioxidantes/farmacología , Fibroblastos , Frutas , Humanos , Peróxido de Hidrógeno
7.
J Enzyme Inhib Med Chem ; 36(1): 286-294, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33334192

RESUMEN

Small-molecules acting as positive allosteric modulators (PAMs) of the A2B adenosine receptor (A2B AR) could potentially represent a novel therapeutic strategy for pathological conditions characterised by altered bone homeostasis, including osteoporosis. We investigated a library of compounds (4-13) exhibiting different degrees of chemical similarity with three indole derivatives (1-3), which have been recently identified by us as PAMs of the A2B AR able to promote mesenchymal stem cell differentiation and bone formation. Evaluation of mineralisation activity of 4-13 in the presence and in the absence of the agonist BAY60-6583 allowed the identification of lead compounds with therapeutic potential as anti-osteoporosis agents. Further biological characterisation of one of the most performing compounds, the benzofurane derivative 9, confirmed that such a molecule behaves as PAM of the A2B AR.


Asunto(s)
Indoles/farmacología , Receptor de Adenosina A2B/metabolismo , Regulación Alostérica/efectos de los fármacos , Regeneración Ósea/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Humanos , Indoles/química , Células Madre Mesenquimatosas/efectos de los fármacos , Estructura Molecular , Relación Estructura-Actividad
8.
Int J Mol Sci ; 22(6)2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33803741

RESUMEN

Neuroactive steroids are potent modulators of microglial functions and are capable of counteracting their excessive reactivity. This action has mainly been ascribed to neuroactive steroids released from other sources, as microglia have been defined unable to produce neurosteroids de novo. Unexpectedly, immortalized murine microglia recently exhibited this de novo biosynthesis; herein, de novo neurosteroidogenesis was characterized in immortalized human microglia. The results demonstrated that C20 and HMC3 microglial cells constitutively express members of the neurosteroidogenesis multiprotein machinery-in particular, the transduceosome members StAR and TSPO, and the enzyme CYP11A1. Moreover, both cell lines produce pregnenolone and transcriptionally express the enzymes involved in neurosteroidogenesis. The high TSPO expression levels observed in microglia prompted us to assess its role in de novo neurosteroidogenesis. TSPO siRNA and TSPO synthetic ligand treatments were used to reduce and prompt TSPO function, respectively. The TSPO expression downregulation compromised the de novo neurosteroidogenesis and led to an increase in StAR expression, probably as a compensatory mechanism. The pharmacological TSPO stimulation the de novo neurosteroidogenesis improved in turn the neurosteroid-mediated release of Brain-Derived Neurotrophic Factor. In conclusion, these results demonstrated that de novo neurosteroidogenesis occurs in human microglia, unravelling a new mechanism potentially useful for future therapeutic purposes.


Asunto(s)
Microglía/metabolismo , Neuroesteroides/metabolismo , Receptores de GABA/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Línea Celular , Regulación de la Expresión Génica , Humanos , Neuroesteroides/química , Pregnenolona/química , Pregnenolona/metabolismo
9.
J Nat Prod ; 83(3): 626-637, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32031808

RESUMEN

Four new triterpenoid bidesmosidic saponins (1-4) and a sesquiterpenoid glucoside (5), together with nine known phenolic compounds (6-14), were isolated from the fruits of Elaeagnus umbellata. Their structures were elucidated using 1D and 2D NMR spectroscopy and mass spectrometry data. The antioxidant capability of the isolated compounds was evaluated in human gingival fibroblasts. Compound 6 decreased ROS production and promoted cell proliferation. It also counteracted the cell cycle blockade induced by a low concentration of H2O2 decreasing the expression of p21 and CDKN2A (p16INK4A). Compound 6 decreased the expression of inflammatory cytokines (IL-6 and IL-8) in response to inflammatory stimuli, supporting its possible use in periodontitis lesions.


Asunto(s)
Antioxidantes/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Elaeagnaceae/química , Fibroblastos/efectos de los fármacos , Antioxidantes/aislamiento & purificación , Células Cultivadas , Frutas/química , Glucósidos/aislamiento & purificación , Glucósidos/farmacología , Humanos , Italia , Estructura Molecular , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología , Especies Reactivas de Oxígeno , Saponinas/aislamiento & purificación , Saponinas/farmacología , Sesquiterpenos/aislamiento & purificación , Sesquiterpenos/farmacología , Triterpenos/aislamiento & purificación , Triterpenos/farmacología
10.
Int J Mol Sci ; 21(20)2020 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-33081024

RESUMEN

Glioblastoma is an aggressive, fast-growing brain tumor influenced by the composition of the tumor microenvironment (TME) in which mesenchymal stromal cell (MSCs) play a pivotal role. Adenosine (ADO), a purinergic signal molecule, can reach up to high micromolar concentrations in TME. The activity of specific adenosine receptor subtypes on glioma cells has been widely explored, as have the effects of MSCs on tumor progression. However, the effects of high levels of ADO on glioma aggressive traits are still unclear as is its role in cancer cells-MSC cross-talk. Herein, we first studied the role of extracellular Adenosine (ADO) on isolated human U343MG cells as a glioblastoma cellular model, finding that at high concentrations it was able to prompt the gene expression of Snail and ZEB1, which regulate the epithelial-mesenchymal transition (EMT) process, even if a complete transition was not reached. These effects were mediated by the induction of ERK1/2 phosphorylation. Additionally, ADO affected isolated bone marrow derived MSCs (BM-MSCs) by modifying the pattern of secreted inflammatory cytokines. Then, the conditioned medium (CM) of BM-MSCs stimulated with ADO and a co-culture system were used to investigate the role of extracellular ADO in GBM-MSC cross-talk. The CM promoted the increase of glioma motility and induced a partial phenotypic change of glioblastoma cells. These effects were maintained when U343MG cells and BM-MSCs were co-cultured. In conclusion, ADO may affect glioma biology directly and through the modulation of the paracrine factors released by MSCs overall promoting a more aggressive phenotype. These results point out the importance to deeply investigate the role of extracellular soluble factors in the glioma cross-talk with other cell types of the TME to better understand its pathological mechanisms.


Asunto(s)
Adenosina/farmacología , Neoplasias Encefálicas/patología , Espacio Extracelular/química , Glioblastoma/patología , Células Madre Mesenquimatosas/metabolismo , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Citocinas/metabolismo , Transición Epitelial-Mesenquimal/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioblastoma/genética , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Invasividad Neoplásica , Fosforilación/efectos de los fármacos
11.
Int J Mol Sci ; 21(8)2020 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-32325956

RESUMEN

Copper plays an important role as a regulator in many pathologies involving the angiogenesis process. In cancerogenesis, tumor progression, and angiogenic diseases, copper homeostasis is altered. Although many details in the pathways involved are still unknown, some copper-specific ligands have been successfully used as therapeutic agents. Copper-binding peptides able to modulate angiogenesis represent a possible way to value new drugs. We previously reported that a fragment (VEGF73-101) of vascular endothelial growth factor (VEGF165), a potent angiogenic, induced an apoptotic effect on human umbilical vein endothelial cells. The aim of this study was to investigate the putative copper ionophoric activity of VEGF73-101, as well as establish a relationship between the structure of the peptide fragment and the cytotoxic activity in the presence of copper(II) ions. Here, we studied the stoichiometry and the conformation of the VEGF73-101/Cu(II) complexes and some of its mutated peptides by electrospray ionization mass spectrometry and circular dichroism spectroscopy. Furthermore, we evaluated the effect of all peptides in the absence and presence of copper ions by cell viability and cytofuorimetric assays. The obtained results suggest that VEGF73-101 could be considered an interesting candidate in the development of new molecules with ionophoric properties as agents in antiangiogenic therapeutic approaches.


Asunto(s)
Apoptosis , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Secuencia de Aminoácidos , Apoptosis/efectos de los fármacos , Apoptosis/genética , Permeabilidad de la Membrana Celular , Supervivencia Celular/efectos de los fármacos , Quelantes/farmacología , Cobre/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Neovascularización Fisiológica/efectos de los fármacos , Neovascularización Fisiológica/genética , Fragmentos de Péptidos/química , Fragmentos de Péptidos/farmacología , Unión Proteica , Conformación Proteica , Espectrometría de Masa por Ionización de Electrospray , Análisis Espectral , Relación Estructura-Actividad , Factor A de Crecimiento Endotelial Vascular/química , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/farmacología
12.
Genome Res ; 26(4): 554-65, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26821571

RESUMEN

The regulation of miRNAs is critical to the definition of cell identity and behavior in normal physiology and disease. To date, the dynamics of miRNA degradation and the mechanisms involved in remain largely obscure, in particular, in higher organisms. Here, we developed a pulse-chase approach based on metabolic RNA labeling to calculate miRNA decay rates at genome-wide scale in mammalian cells. Our analysis revealed heterogeneous miRNA half-lives, with many species behaving as stable molecules (T1/2> 24 h), while others, including passenger miRNAs and a number (25/129) of guide miRNAs, are quickly turned over (T1/2= 4-14 h). Decay rates were coupled with other features, including genomic organization, transcription rates, structural heterogeneity (isomiRs), and target abundance, measured through quantitative experimental approaches. This comprehensive analysis highlighted functional mechanisms that mediate miRNA degradation, as well as the importance of decay dynamics in the regulation of the miRNA pool under both steady-state conditions and during cell transitions.


Asunto(s)
MicroARNs/genética , Animales , Proteínas Argonautas/metabolismo , Fibroblastos , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Ratones , MicroARNs/metabolismo , Interferencia de ARN , Estabilidad del ARN , Ribonucleasa III/metabolismo , Factores de Tiempo , Transcripción Genética
13.
Int J Mol Sci ; 20(18)2019 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-31510070

RESUMEN

A key role of the mitochondrial Translocator Protein 18 KDa (TSPO) in neuroinflammation has been recently proposed. However, little is known about TSPO-activated pathways underlying the modulation of reactive microglia. In the present work, the TSPO activation was explored in an in vitro human primary microglia model (immortalized C20 cells) under inflammatory stimulus. Two different approaches were used with the aim to (i) pharmacologically amplify or (ii) silence, by the lentiviral short hairpin RNA, the TSPO physiological function. In the TSPO pharmacological stimulation model, the synthetic steroidogenic selective ligand XBD-173 attenuated the activation of microglia. Indeed, it reduces and increases the release of pro-inflammatory and anti-inflammatory cytokines, respectively. Such ligand-induced effects were abolished when C20 cells were treated with the steroidogenesis inhibitor aminoglutethimide. This suggests a role for neurosteroids in modulating the interleukin production. The highly steroidogenic ligand XBD-173 attenuated the neuroinflammatory response more effectively than the poorly steroidogenic ones, which suggests that the observed modulation on the cytokine release may be influenced by the levels of produced neurosteroids. In the TSPO silencing model, the reduction of TSPO caused a more inflamed phenotype with respect to scrambled cells. Similarly, during the inflammatory response, the TSPO silencing increased and reduced the release of pro-inflammatory and anti-inflammatory cytokines, respectively. In conclusion, the obtained results are in favor of a homeostatic role for TSPO in the context of dynamic balance between anti-inflammatory and pro-inflammatory mediators in the human microglia-mediated inflammatory response. Interestingly, our preliminary results propose that the TSPO expression could be stimulated by NF-κB during activation of the inflammatory response.


Asunto(s)
Citocinas/metabolismo , Mediadores de Inflamación/metabolismo , Microglía/efectos de los fármacos , Purinas/farmacología , Interferencia de ARN , Receptores de GABA/metabolismo , Aminoglutetimida/farmacología , Antiinflamatorios/farmacología , Inhibidores de la Aromatasa/farmacología , Secuencia de Bases , Línea Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Citocinas/farmacología , Expresión Génica/efectos de los fármacos , Humanos , Mediadores de Inflamación/farmacología , Microglía/metabolismo , FN-kappa B/metabolismo , Fenotipo , Receptores de GABA/genética
14.
Bioorg Med Chem ; 26(22): 5885-5895, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30415894

RESUMEN

The expression levels and the subcellular localization of adenosine receptors (ARs) are affected in several pathological conditions as a consequence of changes in adenosine release and metabolism. In this respect, labelled probes able to monitor the AR expression could be a useful tool to investigate different pathological conditions. Herein, novel ligands for ARs, bearing the fluorescent 7-nitrobenzofurazan (NBD) group linked to the N1 (1,2) or N10 (3,4) nitrogen of a triazinobenzimidazole scaffold, were synthesized. The compounds were biologically evaluated as fluorescent probes for labelling A1 and A2B AR subtypes in bone marrow-derived mesenchymal stem cells (BM-MSCs) that express both receptor subtypes. The binding affinity of the synthetized compounds towards the different AR subtypes was determined. The probe 3 revealed a higher affinity to A1 and A2B ARs, showing interesting spectroscopic properties, and it was selected as the most suitable candidate to label both AR subtypes in undifferentiated MSCs. Fluorescence confocal microscopy showed that compound 3 significantly labelled ARs on cell membranes and the fluorescence signal was decreased by the cell pre-incubation with the A1 AR and A2B AR selective agonists, R-PIA and BAY 60-6583, respectively, thus confirming the specificity of the obtained signal. In conclusion, compound 3 could represent a useful tool to investigate the expression pattern of both A1 and A2B ARs in different pathological and physiological processes. Furthermore, these results provide an important basis for the design of new and more selective derivatives able to monitor the expression and localization of each different ARs in several tissues and living cells.


Asunto(s)
Bencimidazoles/farmacología , Colorantes Fluorescentes/farmacología , Receptor de Adenosina A1/metabolismo , Receptor de Adenosina A2B/metabolismo , Triazinas/farmacología , Bencimidazoles/síntesis química , Bencimidazoles/química , Células Cultivadas , Relación Dosis-Respuesta a Droga , Fluorescencia , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/química , Humanos , Microscopía Confocal , Estructura Molecular , Receptor de Adenosina A1/química , Receptor de Adenosina A2B/química , Relación Estructura-Actividad , Triazinas/síntesis química , Triazinas/química
15.
Int J Mol Sci ; 17(7)2016 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-27367681

RESUMEN

The steroidogenic 18 kDa translocator protein (TSPO) is an emerging, attractive therapeutic tool for several pathological conditions of the nervous system. Here, 13 high affinity TSPO ligands belonging to our previously described N,N-dialkyl-2-phenylindol-3-ylglyoxylamide (PIGA) class were evaluated for their potential ability to affect the cellular Oxidative Metabolism Activity/Proliferation index, which is used as a measure of astrocyte well-being. The most active PIGA ligands were also assessed for steroidogenic activity in terms of pregnenolone production, and the values were related to the metabolic index in rat and human models. The results showed a positive correlation between the increase in the Oxidative Metabolism Activity/Proliferation index and the pharmacologically induced stimulation of steroidogenesis. The specific involvement of steroid molecules in mediating the metabolic effects of the PIGA ligands was demonstrated using aminoglutethimide, a specific inhibitor of the first step of steroid biosynthesis. The most promising steroidogenic PIGA ligands were the 2-naphthyl derivatives that showed a long residence time to the target, in agreement with our previous data. In conclusion, TSPO ligand-induced neurosteroidogenesis was involved in astrocyte well-being.


Asunto(s)
Astrocitos/citología , Indoles/farmacología , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Línea Celular , Proliferación Celular/efectos de los fármacos , Humanos , Neurogénesis/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Pregnenolona/metabolismo
16.
Biochim Biophys Acta ; 1843(12): 2957-66, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25241343

RESUMEN

The A2B adenosine receptor (A2B AR), activated in response to high levels of endogenous adenosine, is the major AR subtype involved in mesenchymal stem cell (MSC) differentiation to osteoblasts and bone formation. For this reason, targeting of A2B AR with selective allosteric modulators may represent a promising pharmacological approach to the treatment of bone diseases. Herein, we report the characterization of a 3-keto-indole derivative, 2-(1-benzyl-1H-indol-3-yl)-2-oxo-N-phenylacetamide (KI-7), as A2B AR positive allosteric modulator in MSCs, demonstrating that this compound is able to potentiate the effects of either adenosine and synthetic orthosteric A2B AR agonists in mediating osteoblast differentiation in vitro. In detail, we observed that MSC treatment with KI-7 determined an increase in the expression of osteoblast-related genes (Runx2 and osterix) and osteoblast marker proteins (phosphatase alkaline and osteocalcin), associated with a stimulation of osteoblast mineralization. In the early phase of differentiation programme, KI-7 significantly potentiated physiological and A2B AR agonist-mediated down-regulation of IL-6 release. Conversely, during the late stage of differentiation, when most of the cells have an osteoblast phenotype, KI-7 caused a sustained raise in IL-6 levels and an improvement in osteoblast viability. These data suggest that a positive allosteric modulation of A2B AR not only favours MSC commitment to osteoblasts, but also ensures a greater survival of mature osteoblasts. Our study paves the way for a therapeutic use of selective positive allosteric modulators of A2B AR in the control of osteoblast differentiation, bone formation and fracture repair.

17.
Biochim Biophys Acta ; 1840(3): 1194-203, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24361612

RESUMEN

BACKGROUND: Among adenosine receptors (ARs) the A2B subtype exhibits low affinity for the endogenous agonist compared with the A1, A2A, and A3 subtypes and is therefore activated when concentrations of adenosine increase to a large extent following tissue damages (e.g. ischemia, inflammation). For this reason, A2B AR represents an important pharmacological target. METHODS: We evaluated seven 1-benzyl-3-ketoindole derivatives (7-9) for their ability to act as positive or negative allosteric modulators of human A2B AR through binding and functional assays using CHO cells expressing human A1, A2A, A2B, and A3 ARs. RESULTS: The investigated compounds behaved as specific positive or negative allosteric modulators of human A2B AR depending on small differences in their structures. The positive allosteric modulators 7a,b and 8a increased agonist efficacy without any effect on agonist potency. The negative allosteric modulators 8b,c and 9a,b reduced agonist potency and efficacy. CONCLUSIONS: A number of 1-benzyl-3-ketoindole derivatives were pharmacologically characterized as selective positive (7a,b) or negative (8c, 9a,b) allosteric modulators of human A2B AR. GENERAL SIGNIFICANCE: The 1-benzyl-3-ketoindole derivatives 7-9 acting as positive or negative allosteric modulators of human A2B AR represent new pharmacological tools useful for the development of therapeutic agents to treat pathological conditions related to an altered functionality of A2B AR.


Asunto(s)
Receptor de Adenosina A2B/efectos de los fármacos , Adenosina-5'-(N-etilcarboxamida)/farmacología , Regulación Alostérica , AMP Cíclico/fisiología , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Humanos , Receptor de Adenosina A2B/metabolismo
18.
Apoptosis ; 20(3): 383-98, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25413799

RESUMEN

Ligands addressed to the mitochondrial Translocator Protein (TSPO) have been suggested as cell death/life and steroidogenesis modulators. Thus, TSPO ligands have been proposed as drug candidates in several diseases; nevertheless, a correlation between their binding affinity and in vitro efficacy has not been demonstrated yet, questioning the specificity of the observed effects. Since drug-target residence time is an emerging parameter able to influence drug pharmacological features, herein, the interaction between TSPO and irDE-MPIGA, a covalent TSPO ligand, was investigated in order to explore TSPO control on death/life processes in a standardized glioblastoma cell setting. After 90 min irDE-MPIGA cell treatment, 25 nM ligand concentration saturated irreversibly all TSPO binding sites; after 24 h, TSPO de-novo synthesis occurred and about 40 % TSPO binding sites resulted covalently bound to irDE-MPIGA. During cell culture treatments, several dynamic events were observed: (a) early apoptotic markers appeared, such as mitochondrial membrane potential collapse (at 3 h) and externalization of phosphatidylserine (at 6 h); (b) cell viability was reduced (at 6 h), without cell cycle arrest. After digitonin-permeabilized cell suspension treatment, a modulation of mitochondrial permeability transition pore was evidenced. Similar effects were elicited by the reversible TSPO ligand PIGA only when applied at micromolar dose. Interestingly, after 6 h, irDE-MPIGA cell exposure restored cell survival parameters. These results highlighted the ligand-target residence time and the cellular setting are crucial parameters that should be taken into account to understand the drug binding affinity and efficacy correlation and, above all, to translate efficiently cellular drug responses from bench to bedside.


Asunto(s)
Ansiolíticos/farmacología , Antineoplásicos/farmacología , Antagonistas del GABA/farmacología , Indoles/farmacología , Neuroglía/efectos de los fármacos , Receptores de GABA/química , Tiocianatos/farmacología , Ansiolíticos/química , Antineoplásicos/química , Sitios de Unión , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ensayos Clínicos como Asunto , Antagonistas del GABA/química , Expresión Génica , Humanos , Indoles/química , Cinética , Ligandos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Neuroglía/metabolismo , Neuroglía/patología , Unión Proteica , Receptores de GABA/genética , Receptores de GABA/metabolismo , Tiocianatos/química
19.
Biochem Soc Trans ; 43(4): 559-65, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26551693

RESUMEN

The translocator protein (TSPO, 18 kDa), mainly localized in the outer mitochondrial membrane of steroidogenic tissues, is involved in several cellular functions. TSPO level alterations have been reported in a number of human disorders, particularly in cancer, psychiatric and neurological diseases. In the central nervous system (CNS), TSPO is usually expressed in glial cells, but also in some neuronal cell types. Interestingly, the expression of TSPO on glial cells rises after brain injury and increased TSPO expression is often observed in neurological disorders, gliomas, encephalitis and traumatic injury. Since TSPO is up-regulated in brain diseases, several structurally different classes of ligands targeting TSPO have been described as potential diagnostic or therapeutic agents. Recent researches have reported that TSPO ligands might be valuable in the treatment of brain diseases. This review focuses on currently available TSPO ligands, as useful tools for the treatment of neurodegeneration, neuro-inflammation and neurotrauma.


Asunto(s)
Encefalopatías/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Receptores de GABA/metabolismo , Animales , Encefalopatías/metabolismo , Humanos , Ligandos , Terapia Molecular Dirigida , Neuroglía/metabolismo , Neuronas/metabolismo , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/uso terapéutico , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba
20.
Biomed J ; : 100723, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38583585

RESUMEN

BACKGROUND: COVID-19 reduces lung functionality causing a decrease of blood oxygen levels (hypoxemia) often related to a decreased cellular oxygenation (hypoxia). Besides lung injury, other factors are implicated in the regulation of oxygen availability such as pH, partial arterial carbon dioxide tension (PaCO2), temperature, and erythrocytic 2,3-bisphosphoglycerate (2,3-BPG) levels, all factors affecting hemoglobin saturation curve. However, few data are currently available regarding the 2,3-BPG modulation in SARS-CoV-2 affected patients at the hospital admission. MATERIAL AND METHODS: Sixty-eight COVID-19 patients were enrolled at hospital admission. The lung involvement was quantified using chest-Computer Tomography (CT) analysed with automatic software (CALIPER). Haemoglobin concentrations, glycemia, and routine analysis were evaluated in the whole blood, while partial arterial oxygen tension (PaO2), PaCO2, pH, and HCO3- were assessed by arterial blood gas analysis. 2,3-BPG levels were assessed by specific immunoenzymatic assays in RBCs. RESULTS: A higher percentage of interstitial lung disease (ILD) and vascular pulmonary-related structure (VRS) volume on chest-CT quantified with CALIPER had been found in COVID-19 patients with a worse disease outcome (R = 0.4342; and R = 0.3641, respectively). Furthermore, patients with lower PaO2 showed an imbalanced acid-base equilibrium (pH, p = 0.0208; PaCO2, p = 0.0496) and a higher 2,3-BPG levels (p = 0.0221). The 2,3-BPG levels were also lower in patients with metabolic alkalosis (p = 0.0012 vs. no alkalosis; and p = 0.0383 vs. respiratory alkalosis). CONCLUSIONS: Overall, the data reveal a different pattern of activation of blood oxygenation compensatory mechanisms reflecting a different course of the COVID-19 disease specifically focusing on 2,3-BPG modulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA