RESUMEN
Space exploration is demanding longer lasting human missions and water resupply from Earth will become increasingly unrealistic. In a near future, the spacecraft water monitoring systems will require technological advances to promptly identify and counteract contingent events of waterborne microbial contamination, posing health risks to astronauts with lowered immune responsiveness. The search for bio-analytical approaches, alternative to those applied on Earth by cultivation-dependent methods, is pushed by the compelling need to limit waste disposal and avoid microbial regrowth from analytical carryovers. Prospective technologies will be selected only if first validated in a flight-like environment, by following basic principles, advantages, and limitations beyond their current applications on Earth. Starting from the water monitoring activities applied on the International Space Station, we provide a critical overview of the nucleic acid amplification-based approaches (i.e., loop-mediated isothermal amplification, quantitative PCR, and high-throughput sequencing) and early-warning methods for total microbial load assessments (i.e., ATP-metry, flow cytometry), already used at a high readiness level aboard crewed space vehicles. Our findings suggest that the forthcoming space applications of mature technologies will be necessarily bounded by a compromise between analytical performances (e.g., speed to results, identification depth, reproducibility, multiparametricity) and detrimental technical requirements (e.g., reagent usage, waste production, operator skills, crew time). As space exploration progresses toward extended missions to Moon and Mars, miniaturized systems that also minimize crew involvement in their end-to-end operation are likely applicable on the long-term and suitable for the in-flight water and microbiological research.
Asunto(s)
Vuelo Espacial , Agua , Humanos , Estudios Prospectivos , Reproducibilidad de los Resultados , Nave EspacialRESUMEN
During longer-lasting future space missions, water renewal by ground-loaded supplies will become increasingly expensive and unmanageable for months. Space exploration by self-sufficient spacecrafts is thus demanding the development of culture-independent microbiological methods for in-flight water monitoring to counteract possible contamination risks. In this study, we aimed at evaluating total microbial load data assessed by selected early-warning techniques with current or promising perspectives for space applications (i.e., HPC, ATP-metry, qPCR, flow cytometry), through the analysis of water sources with constitutively different contamination levels (i.e., chlorinated and unchlorinated tap waters, groundwaters, river waters, wastewaters). Using a data-driven double-threshold identification procedure, we presented new reference values of water quality based on the assessment of the total microbial load. Our approach is suitable to provide an immediate alert of microbial load peaks, thus enhancing the crew responsiveness in case of unexpected events due to water contamination and treatment failure. Finally, the backbone dataset could help in managing water quality and monitoring issues for both space and Earth-based applications.
RESUMEN
Disinfection of hot water systems is critical for reducing Legionnaires' disease in high-risk buildings. The use of neutral electrolysed oxidising water (NEOW) is a promising method for the control of microorganisms in hot water systems. However, full-scale evaluations of the efficacy of NEOW devices to control Legionella pneumophila are currently lacking. The aim of this study was to assess the effectiveness of a NEOW device in reducing L. pneumophila in a hotel water network. Water samples (nâ¯=â¯67) were collected from different sites of a hotel distribution system before and after the installation of the NEOW device at the 1st, 4th, 8th and 12th week. Detection of L. pneumophila was performed comparing culture, qPCR and PMA-qPCR methods. Total bacterial counts (22⯰C and 37⯰C), Pseudomonas spp. and physico-chemical parameters were also monitored. The NEOW treatment resulted in a reduction of the amount of L. pneumophila positive samples (-32%) and of the number of heavily contaminated points (>104â¯CFU/L and >103â¯CFU/L) (-100% and -96%, respectively). Treatment maintained L. pneumophila at low levels (<102â¯CFU/L), which do not require specific intervention measures. The effectiveness of the disinfection system was also confirmed by PMA-qPCR (pâ¯<â¯0.001). The use of PMA resulted in a signal decrease in almost all samples upon the disinfection treatment. The NEOW disinfection device appears to be a promising approach to reduce the colonisation of hot water systems by L. pneumophila; however, further investigations are needed to ascertain its efficiency over longer time periods.
Asunto(s)
Desinfección/instrumentación , Electrólisis/métodos , Legionella pneumophila/aislamiento & purificación , Purificación del Agua/métodos , Abastecimiento de Agua/normas , Carga Bacteriana/normas , Desinfección/métodos , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa , Temperatura , Microbiología del AguaRESUMEN
Legionella pneumophila is a ubiquitous microorganism widely distributed in aquatic environments and can cause Legionellosis in humans. A promising approach to detect viable cells in water samples involves the use of quantitative polymerase chain reaction (qPCR) in combination with photoactivatable DNA intercalator propidium monoazide (PMA). However, the PMA efficiency could be different depending on the experimental conditions used. The aim of this study was to compare two PMA exposure protocols: (A) directly on the membrane filter or (B) in liquid after filter washing. The overall PMA-induced qPCR means reductions in heat-killed L. pneumophila cells were 2.42 and 1.91 log units for exposure protocols A and B, respectively. A comparison between the results obtained reveals that filter exposure allows a higher PMA-qPCR signal reduction to be reached, mainly at low concentrations (p < 0.05). This confirms the potential use of this method to quantify L. pneumophila in water with low contamination.