Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell Environ ; 47(4): 1285-1299, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38213092

RESUMEN

Using a unique 8-year data set (2010-2017) of phloem data, we studied the effect of temperature and precipitation on the phloem anatomy (conduit area, widths of ring, early and late phloem) and xylem-ring width in two coexisting temperate tree species, Picea abies and Fagus sylvatica, from three contrasting European temperate forest sites. Histometric analyses were performed on microcores taken from tree stems in autumn. We found high interannual variability and sensitivity of phloem anatomy and xylem-ring widths to precipitation and temperature; however, the responses were species- and site-specific. The contrasting response of xylem and phloem-ring widths of the same tree species to weather conditions was found at the two Slovenian sites generally well supplied with precipitation, while at the driest Czech site, the influence of weather factors on xylem and phloem ring widths was synchronised. Since widths of mean annual xylem and phloem increments were narrowest at the Czech site, this site is suggested to be most restrictive for the radial growth of both species. By influencing the seasonal patterns of xylem and phloem development, water availability appears to be the most important determinant of tissue- and species-specific responses to local weather conditions.


Asunto(s)
Abies , Fagus , Picea , Pinus , Picea/fisiología , Floema , Clima , Árboles/fisiología
2.
Recent Pat Nanotechnol ; 12(1): 13-21, 2018 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-28786344

RESUMEN

BACKGROUND: Wood science and nanomaterials science interact together in two different aspects; a) fabrication of lignocellulosic nanomaterials derived from wood and plant-based sources and b) surface or bulk wood modification by nanoparticles. In this review, we attempt to visualize the impact of nanoparticles on the wood coating and preservation treatments based on a thorough registration of the patent databases. METHOD: The study was carried out as an overview of the scientifically most followed trends on nanoparticles utilization in wood science and wood protection depicted by recent universal filed patents. This review is exclusively targeted on the solid (timber) wood as a subject material. RESULTS: Utilization of mainly metal nanoparticles as photoprotection, antibacterial, antifungal, antiabrasive and functional component on wood modification treatments was found to be widely patented. Additionally, an apparent minimization in the emission of volatile organic compounds (VOCs) has been succeeded. CONCLUSION: Bulk wood preservation and more importantly, wood coating, splay the range of strengthening wood dimensional stability and biological degradation, against moisture absorption and fungi respectively. Nanoparticle materials have addressed various issues of wood science in a more efficient and environmental way than the traditional methods. Nevertheless, abundant tests and regulations are still needed before industrializing or recycling these products.


Asunto(s)
Nanotecnología , Madera , Antiinfecciosos/farmacología , Formaldehído/análisis , Interacciones Hidrofóbicas e Hidrofílicas , Propiedades de Superficie , Rayos Ultravioleta , Compuestos Orgánicos Volátiles/análisis
3.
Ultrason Sonochem ; 23: 148-55, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25453212

RESUMEN

Agricultural and forest residues obtained after harvesting are promising renewable sources, suitable as a source of pulp for cellulose nanocrystal manufacturing. Cavitation-assisted softening of the lignin-carbohydrate matrix offers sample opportunity for cellulose fibril liberation and degradation of amorphous cellulose. The present work addresses cavitation assisted cellulose fibril and crystal liberation and film forming properties of the supernatant phase of treated agricultural and forest residues. The effectiveness of this method has been evaluated according to crystallinity indices and hydrogen bond energies, as measured by FT-IR analysis. It has been observed that the use of cavitation increased the crystallinity and caused partial removal and degradation of the lignin matrix. Overall, it appears that considerable improvement of crystallinity can be obtained from agricultural and forest residues through the use of cavitation.


Asunto(s)
Lignina/química , Lignina/aislamiento & purificación , Ultrasonido , Conformación de Carbohidratos , Química Farmacéutica , Tecnología Química Verde , Modelos Moleculares , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA