Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Environ Health ; 23(1): 10, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267931

RESUMEN

BACKGROUND: The independent effects of short-term exposure to increased air temperature and air pollution on mortality are well-documented. There is some evidence indicating that elevated concentrations of air pollutants may lead to increased heat-related mortality, but this evidence is not consistent. Most of these effects have been documented through time-series studies using city-wide data, rather than at a finer spatial level. In our study, we examined the possible modification of the heat effects on total and cause-specific mortality by air pollution at municipality level in the Attica region, Greece, during the warm period of the years 2000 to 2016. METHODS: A municipality-specific over-dispersed Poisson regression model during the warm season (May-September) was used to investigate the heat effects on mortality and their modification by air pollution. We used the two-day average of the daily mean temperature and daily mean PM10, NO2 and 8 hour-max ozone (O3), derived from models, in each municipality as exposures. A bivariate tensor smoother was applied for temperature and each pollutant alternatively, by municipality. Α random-effects meta-analysis was used to obtain pooled estimates of the heat effects at different pollution levels. Heterogeneity of the between-levels differences of the heat effects was evaluated with a Q-test. RESULTS: A rise in mean temperature from the 75th to the 99th percentile of the municipality-specific temperature distribution resulted in an increase in total mortality of 12.4% (95% Confidence Interval (CI):7.76-17.24) on low PM10 days, and 21.25% (95% CI: 17.83-24.76) on high PM10 days. The increase on mortality was 10.09% (95% CI: - 5.62- 28.41) on low ozone days, and 14.95% (95% CI: 10.79-19.27) on high ozone days. For cause-specific mortality an increasing trend of the heat effects with increasing PM10 and ozone levels was also observed. An inconsistent pattern was observed for the modification of the heat effects by NO2, with higher heat effects estimated in the lower level of the pollutant. CONCLUSIONS: Our results support the evidence of elevated heat effects on mortality at higher levels of PM10 and 8 h max O3. Under climate change, any policy targeted at lowering air pollution levels will yield significant public health benefits.


Asunto(s)
Contaminación del Aire , Contaminantes Ambientales , Ozono , Humanos , Grecia/epidemiología , Calor , Dióxido de Nitrógeno , Contaminación del Aire/efectos adversos , Ozono/efectos adversos
2.
Int J Biometeorol ; 66(11): 2339-2355, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36129581

RESUMEN

The thermal conditions that prevail in cities pose a number of challenges to urban residents and policy makers related to quality of life, health and welfare as well as to sustainable urban development. However, the changes in thermal stress due to climate change are probably not uniform among cities with different background climates. In this work, a comparative analysis of observed and projected thermal stress (cold stress, heat stress, no thermal stress) across four European cities (Helsinki, Rotterdam, Vienna, and Athens), which are representative of different geographical and climatic regions of the continent, for a recent period (1975 - 2004) and two future periods (2029 - 2058, 2069 - 2098) has been conducted. Applying a rational thermal index (Universal Thermal Climate Index) and considering two models of the EURO-CORDEX experiment (RCA4-MOHC, RCA4-MPI) under two Representative Concentration Pathways (RCP4.5, RCP8.5), the projected future changes in thermal conditions are inspected. The distribution of thermal stress in the current climate varies greatly between the cities, reflecting their climatic and urban heterogeneity. In the future climate, a reduction in the frequency of cold stress is expected across all cities, ranging between - 2.9% and - 16.2%. The projected increase in the frequency of optimal thermal conditions increases with increasing latitude, while the projected increase in the frequency of heat stress (ranging from + 0.2 to + 14.6%) decreases with increasing latitudes. Asymmetrical changes in cold- and heat-related stress between cities were found to affect the annual percentage of optimal (no thermal stress) conditions in future. Although future projections are expected to partly bridge the gap between the less-privileged cities (with respect to annual frequency of optimal thermal conditions) like Helsinki and Rotterdam and the more privileged ones like Athens, the former will still lag behind on an annual basis.


Asunto(s)
Cambio Climático , Trastornos de Estrés por Calor , Humanos , Ciudades , Calidad de Vida , Predicción
3.
Environ Res ; 193: 110357, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33131709

RESUMEN

BACKGROUND: It is known that on days with high temperatures higher mortality is observed and there is a minimum mortality temperature (MMT) point which is higher in places with warmer climate. This indicates some population adaptation to local climate but information on how quickly this adaptation will occur under climate change is lacking. METHODS: To investigate this, we associated daily mortality data with temperature during the warm period in 2004-2013 for London inhabitants born in five climatic zones (UK, Tropical, Sub-tropical, Boreal and Mixed). We fitted Poisson regression with distributed-lag non-linear models for each climatic zone group separately to estimate group-specific exposure-response associations and MMTs. We report relative risks of death comparing the 95th percentile (21 °C) and maximum (25 °C) of the temperature distribution in London with the zone-specific minimum mortality temperature. RESULTS: No heat-related mortality was observed for people born in countries with Sub-tropical and Mixed climates. We observed an increase of 26%, 35% and 39% in the risk of death at 25 °C compared to the MMT in people born in the UK (marine climate), Tropical and Boreal climate respectively. The temperatures with the lowest mortality in these groups ranged from 15.9 to 17.7 °C. DISCUSSION: Our findings imply that people born in different climatic zones do not adapt fully to their new environment within their lifetime. This implies that populations may not adapt readily to climate change and will suffer increased effects from heat. In the presence of climate change, policy makers should be aware of a delayed process of adaptation.


Asunto(s)
Adaptación Fisiológica , Calor , Femenino , Humanos , Londres/epidemiología , Mortalidad , Embarazo , Estaciones del Año , Temperatura
4.
FEMS Microbiol Lett ; 3712024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38168702

RESUMEN

The characterization of cyanobacteria communities remains challenging, as taxonomy of several cyanobacterial genera is still unresolved, especially within Nostocales taxa. Nostocales cyanobacteria are capable of nitrogen fixation; nitrogenase genes are grouped into operons and are located in the same genetic locus. Structural nitrogenase genes (nifH, nifK and nifD) as well as 16S rRNA have been shown to be adequate genetic markers for distinguishing cyanobacterial genera. However, there is no available information regarding the phylogeny of regulatory genes of the nitrogenase cluster. Aiming to provide a more accurate overview of the evolution of nitrogen fixation, this study analyzed for the first time nifE and nifN genes, which regulate the production of nitrogenase, alongside nifH. Specific primers were designed to amplify nifE and nifN genes, previously not available in literature and phylogenetic analysis was carried out in 13 and 14 TAU-MAC culture collection strains, respectively, of ten Nostocales genera along with other sequences retrieved from cyanobacteria genomes. Phylogenetic analysis showed that these genes seem to follow a common evolutionary pattern with nitrogenase structural genes and 16S rRNA. The classification of cyanobacteria based on these molecular markers seems to distinguish Nostocales strains with common morphological, ecological, and physiological characteristics.


Asunto(s)
Cianobacterias , Nitrogenasa , Nitrogenasa/genética , Filogenia , ARN Ribosómico 16S/genética , Fijación del Nitrógeno/genética , Cianobacterias/genética
5.
Sci Rep ; 12(1): 10365, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35725762

RESUMEN

Fire activity has significantly changed in Europe over the last decades (1980-2020s), with the emergence of summers attaining unprecedented fire prone weather conditions. Here we report a significant shift in the non-stationary relationship linking fire weather conditions and fire intensity measured in terms of CO2 emissions released during biomass burning across a latitudinal gradient of European IPCC regions. The reported trends indicate that global warming is possibly inducing an incipient change on regional fire dynamics towards increased fire impacts in Europe, suggesting that emerging risks posed by exceptional fire-weather danger conditions may progressively exceed current wildfire suppression capabilities in the next decades and impact forest carbon sinks.


Asunto(s)
Incendios , Incendios Forestales , Dióxido de Carbono , Calentamiento Global , Tiempo (Meteorología)
6.
Artículo en Inglés | MEDLINE | ID: mdl-31575034

RESUMEN

Spatial variability in temperature exists within metropolitan areas but very few studies have investigated intra-urban differentiation in the temperature-mortality effects. We investigated whether local characteristics of 42 Municipalities within the Greater Athens Area lead to modified temperature effects on mortality and if effect modifiers can be identified. Generalized Estimating Equations models were used to assess the effect of high ambient temperature on the total and cause-specific daily number of deaths and meta-regression to investigate effect modification. We found significant effects of daily temperature increases on all-cause, cardiovascular, and respiratory mortality (e.g., for all ages 4.16% (95% CI: 3.73,4.60%) per 1 °C increase in daily temperature (lags 0-3). Heterogeneity in the effect estimates between Municipalities was observed in several outcomes and environmental and socio-economic effect modifying variables were identified, such as % area coverage of buildings, length of roads/km2, population density, % unemployed, % born outside the EU countries and mean daily temperature. To further examine the role of temperature, we alternatively used modelled temperature per Municipality and calculated the effects. We found that heterogeneity was reduced but not eliminated. It appears that there are socioeconomic status and environmental determinants of the magnitude of heat-related effects on mortality, which are detected with some consistency and should be further investigated.


Asunto(s)
Calor , Mortalidad/tendencias , Contaminación del Aire/análisis , Preescolar , Ciudades , Grecia , Humanos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA