Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Analyst ; 149(5): 1609-1617, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38294003

RESUMEN

The recovery of the polyol component, after glycolysis of polyurethane (PU) foams coming from automotive waste, was investigated. Several separation methods such as simple sedimentation, centrifugation and liquid-liquid extraction, eventually preceded by an acid washing step, were tested. The obtained fractions were characterized by infrared spectroscopy and CHN elemental analysis. Furthermore, multivariate data analysis was carried out on the infrared spectra by principal component analysis to classify the fractions based on purity. IR spectroscopy coupled with principal component analysis was able to estimate the success of the separation and eventual culprits such as contaminations, which were then quantified by CHN elemental analysis. This approach addresses some critical limitations associated with classical analytical techniques such as NMR, TGA, GPC, MALDI-TOF that often require an extremely accurate separation of the depolymerized product fractions. Moreover, IR spectroscopy and CHN elemental analysis techniques are cheap and widespread in standard materials science laboratories. At last, based on the results of the analysis of the regenerated polyol fractions, and on the foaming tests, considerations were made to guide the choice of the purification method according to the application specifications and greenness.

2.
Macromol Rapid Commun ; 45(18): e2400288, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39012272

RESUMEN

Two model substrates for the grafting to reaction are considered: not-deglazed silicon, whose surface is coated by a thin oxide layer with reactive silanol groups on its surface; and deglazed silicon, where the oxide layer is removed by treatment with hydrofluoric acid. The reactive polymers are hydroxy-terminated polystyrenes with molecular weights ranging from 3.9 to 13.9 kg mol⁻1. The grafting to reaction is carried out at different temperatures and for different periods of time on the two different substrates. The thickness and the thermal stability of the resulting brushes are evaluated. Furthermore, the grafting of a highly dispersed system is simulated by blending two polymers with different molecular weights. Although the brush thickness growth is found to be faster on deglazed silicon, the preferential grafting of short chains occurs with equal chain selection propensity on both substrates.


Asunto(s)
Poliestirenos , Silicio , Propiedades de Superficie , Silicio/química , Poliestirenos/química , Peso Molecular , Temperatura
3.
Molecules ; 27(10)2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35630525

RESUMEN

Organo-modified layered materials characterization poses challenges due to their complexity and how other aspects such as contamination, preparation methods and degree of intercalation influence the properties of these materials. Consequently, a deep understanding of their interlayer organization is of utmost importance to optimize their applications. These materials can in fact improve the stability of photoactive molecules through intercalation, avoiding the quenching of their emission at the solid state, to facilitate their use in sensors or other devices. Two synthetic methods for the preparation of saponites with a cationic surfactant (CTABr) and a neutral chromophore (Fluorene) were tested and the obtained products were initially characterized with several complementary techniques (XRPD, SEM, TGA, IR, UV-Vis, Fluorescence and Raman spectroscopy), but a clear understanding of the organization of the guest molecules in the material could not be obtained by these techniques alone. This information was obtained only by thermogravimetry coupled with gas chromatography and mass spectroscopy (TGA-GC-MS) which allowed identifying the species present in the sample and the kind of interaction with the host by distinguishing between intercalated and adsorbed on the surface.


Asunto(s)
Silicatos de Aluminio , Tensoactivos , Cromatografía de Gases y Espectrometría de Masas , Termogravimetría
4.
Analyst ; 146(20): 6145-6155, 2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34487131

RESUMEN

In the present study, a reliable and robust method was developed to quantify the molecular weight discrimination that can occur in grafting to reactions via indirect MALDI-TOF quantification of the molecular weights of grafted chains by comparing the characteristics of the polymeric material before the grafting reaction with those of the unreacted material recovered after grafting. Two polystyrene samples with different molecular weights and narrow molecular weight distributions were employed to prepare model blends that were grafted to silicon wafers and an analytical method was developed and validated to assess and quantify the modification of the molecular weight distribution that takes place during the grafting to process. Particular attention was paid to the standardization of the sample treatment and to find the best data collection and calibration methodologies in order to have statistically significant data even in the presence of a very scarce amount of the sample. Furthermore, to evaluate the accuracy of the analytical procedure, the lack of suitable standard and certified materials required a further experiment to be carried out by comparing the new optimized MALDI-TOF method and direct measurements using TGA-GC-MS on a model blend containing deuterated and hydrogenated polystyrene samples with appropriate molecular weights and distributions. The optimized method was applied on samples obtained by a thermally induced grafting to reaction from ultrathin polymer films and, for the first time, to our knowledge, an enrichment effect occurring in the ultrathin grafted layer obtained from a melt was evidenced.

5.
Int J Mol Sci ; 22(9)2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-34066374

RESUMEN

Low-cost, environmentally friendly and easily applicable coating for Mg alloys, able to resist in real world conditions, are studied. Coatings already used for other metals (aluminum, steel) and never tested on Mg alloy for its different surface and reactivity were deposited on AM60 magnesium alloys to facilitate their technological applications, also in presence of chemically aggressive conditions. A biobased PA11 powder coating was compared to synthetic silicon-based and polyester coatings, producing lab scale samples, probed by drop deposition tests and dipping in increasingly aggressive, salty, basic and acid solutions, at RT and at higher temperatures. Coatings were analyzed by SEM/EDX to assess their morphology and compositions, by optical and IR-ATR microscopy analyses, before and after the drop tests. Migration analyses from the samples were performed by immersion tests using food simulants followed by ICP-OES analysis of the recovered simulant to explore applications also in the food contact field. A 30 µm thick white lacquer and a 120 µm PA11 coating resulted the best solutions. The thinner siliconic and lacquer coatings, appearing brittle and thin in the SEM analysis, failed some drop and/or dipping test, with damages especially at the edges. The larger thickness is thus the unique solution for edgy or pointy samples. Finally, coffee cups in AM60 alloy were produced, as real word prototypes, with the best performing coatings and tested for both migration by dipping, simulating also real world aging (2 h in acetic acid at 70° and 24 h in hot coffee at 60 °C): PA11 resulted stable in all the tests and no migration of toxic metals was observed, resulting a promising candidate for many real world application in chemically aggressive environments and also food and beverage related applications.


Asunto(s)
Aleaciones/química , Aleaciones/economía , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/economía , Costos y Análisis de Costo , Ambiente , Alimentos , Magnesio/economía , Magnesio/química , Espectroscopía Infrarroja por Transformada de Fourier
6.
Chemistry ; 25(49): 11503-11511, 2019 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-31240804

RESUMEN

The exact recipe to prepare the ancient Maya Blue (MB), an incredibly resistant and brilliant pigment prepared from indigo (dye) and Palygorskite (clay), is lost to the ages. To unravel the key features of the MB formation process, several inorganic-dye couples were heated to 200 °C and cooled to RT, to investigate their reactivity and the diffusion and degree of sequestration of the dye into the inorganic host. In situ XRPD/PDF and fiber optic reflectance spectroscopy (FORS) data, along with TGA, provided a comprehensive overview on MB formation mechanism. XRPD/PDF gave information on long/short range behaviors of water desorption/adsorption and indigo sequestration, while TGA and in situ FORS gave information on mass and optical changes within temperature. Ex situ dye removal was used to understand the sample stability after the thermal treatment. A statistical approach based on principal component analysis was exploited to efficiently and jointly analyze the ≈3000 collected patterns. MB formation starts below 110 °C with disordered distribution of indigo within the channels, reaching maximum reaction speed and higher ordering at 150 °C. Above 175 °C, color changes and a stronger sequestration of indigo into framework channels are observed, whereas the affinity for water is dramatically reduced. The origin of different colors, hues, and stability in historical MB samples can then be explained in terms of different thermal histories of the starting mechanical indigo/palygorskite mixtures.

7.
J Biol Chem ; 291(35): 18148-62, 2016 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-27387503

RESUMEN

Staphylococcus aureus is a commensal bacterium that has the ability to cause superficial and deep-seated infections. Like several other invasive pathogens, S. aureus can capture plasminogen from the human host where it can be converted to plasmin by host plasminogen activators or by endogenously expressed staphylokinase. This study demonstrates that sortase-anchored cell wall-associated proteins are responsible for capturing the bulk of bound plasminogen. Two cell wall-associated proteins, the fibrinogen- and fibronectin-binding proteins A and B, were found to bind plasminogen, and one of them, FnBPB, was studied in detail. Plasminogen captured on the surface of S. aureus- or Lactococcus lactis-expressing FnBPB could be activated to the potent serine protease plasmin by staphylokinase and tissue plasminogen activator. Plasminogen bound to recombinant FnBPB with a KD of 0.532 µm as determined by surface plasmon resonance. Plasminogen binding did not to occur by the same mechanism through which FnBPB binds to fibrinogen. Indeed, FnBPB could bind both ligands simultaneously indicating that their binding sites do not overlap. The N3 subdomain of FnBPB contains the full plasminogen-binding site, and this includes, at least in part, two conserved patches of surface-located lysine residues that were recognized by kringle 4 of the host protein.


Asunto(s)
Adhesinas Bacterianas/química , Proteínas Bacterianas/química , Plasminógeno/química , Staphylococcus aureus/química , Adhesinas Bacterianas/metabolismo , Proteínas Bacterianas/metabolismo , Humanos , Plasminógeno/metabolismo , Unión Proteica , Dominios Proteicos , Staphylococcus aureus/metabolismo
8.
Anal Bioanal Chem ; 408(12): 3155-63, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26873220

RESUMEN

In the present paper, a reliable and rugged thermogravimetry-gas chromatography-mass spectrometry (TGA-GC-MS) method was developed to determine the composition of ultrathin films consisting of binary blends of functional polystyrene (PS) and polymethylmethacrylate (PMMA) grafted to a silicon wafer. A general methodology will be given to address the composition determination problem for binary or even multicomponent polymer brush systems using the PS/PMMA-based samples as a paradigmatic example. In this respect, several distinct tailor-made materials were developed to ensure reliable calibration and validation stages. The analytical method was tested on unknown samples to follow the composition evolution in PS/PMMA brushes during the grafting reaction. A preferential grafting of the PMMA was revealed in full agreement with its preferential interaction with the SiO2 polar surface.

9.
Infect Immun ; 83(10): 4093-102, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26238710

RESUMEN

In this study, we investigated the cell wall-anchored fibronectin-binding proteins SpsD and SpsL from the canine commensal and pathogen Staphylococcus pseudintermedius for their role in promoting bacterial invasion of canine progenitor epidermal keratinocytes (CPEK). Invasion was examined by the gentamicin protection assay and fluorescence microscopy. An ΔspsD ΔspsL mutant of strain ED99 had a dramatically reduced capacity to invade CPEK monolayers, while no difference in the invasion level was observed with single mutants. Lactococcus lactis transformed with plasmids expressing SpsD and SpsL promoted invasion, showing that both proteins are important. Soluble fibronectin was required for invasion, and an RGD-containing peptide or antibodies recognizing the integrin α5ß1 markedly reduced invasion, suggesting an important role for the integrin in this process. Src kinase inhibitors effectively blocked internalization, suggesting a functional role for the kinase in invasion. In order to identify the minimal fibronectin-binding region of SpsD and SpsL involved in the internalization process, recombinant fragments of both proteins were produced. The SpsD520-846 and SpsL538-823 regions harboring the major fibronectin-binding sites inhibited S. pseudintermedius internalization. Finally, the effects of staphylococcal invasion on the integrity of different cell lines were examined. Because SpsD and SpsL are critical factors for adhesion and invasion, blocking these processes could provide a strategy for future approaches to treating infections.


Asunto(s)
Proteínas Bacterianas/metabolismo , Enfermedades de los Perros/microbiología , Células Epiteliales/microbiología , Fibronectinas/metabolismo , Infecciones Estafilocócicas/veterinaria , Staphylococcus/metabolismo , Animales , Proteínas Bacterianas/genética , Línea Celular , Pared Celular/genética , Pared Celular/metabolismo , Enfermedades de los Perros/metabolismo , Perros , Unión Proteica , Infecciones Estafilocócicas/metabolismo , Infecciones Estafilocócicas/microbiología , Staphylococcus/genética , Staphylococcus/patogenicidad , Virulencia
10.
Chemistry ; 21(42): 14975-86, 2015 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-26269963

RESUMEN

Layered double hydroxides (LDHs) are versatile materials used for intercalating bioactive molecules in the fields of pharmaceuticals, nutraceuticals and cosmetics, with the purpose of protecting them from degradation, enhancing their water solubility to increase bioavailability and improving their pharmacokinetic properties and formulation stability. Moreover, LDHs are used in various technological applications to improve stability and processability. The crystal chemistry of hydrotalcite-like compounds was investigated by X-ray powder diffraction (XRPD), automated electron diffraction tomography (ADT) and thermogravimetric analysis (TGA)-GC-MS to shed light on the mechanisms involved in ion exchange and absorption of contaminants, mainly carbonate anions. For the first time, ADT allowed a structural model of LDH_NO3 to be obtained from experiment, shedding light on the conformation of nitrate inside LDH and on the loss of crystallinity due to the layer morphology. The ADT analysis of a hybrid LDH sample (LDH_EUS) clearly revealed an increase in defectivity in this material. XRPD demonstrated that the presence of carbonate can influence the intercalation of organic molecules into LDH, since CO3 -contaminated samples tend to adopt d spacings that are approximate multiples of the d spacing of LDH_CO3 . TGA-GC-MS allowed intercalated and surface- adsorbed organic molecules to be distinguished and quantified, the presence and amount of carbonate to be confirmed, especially at low concentrations (<2 wt %), and the different types and strengths of adsorption to be classified with respect to the temperature of elimination.

11.
Infect Immun ; 82(6): 2448-59, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24686057

RESUMEN

Staphylococcus lugdunensis is a coagulase-negative staphylococcus that is a commensal of humans and an opportunistic pathogen. It can cause a spectrum of infections, including those that are associated with the ability to form biofilm, such as occurs with endocarditis or indwelling medical devices. The genome sequences of two strains revealed the presence of orthologues of the ica genes that are responsible for synthesis of poly-N-acetylglucosamine (PNAG) that is commonly associated with biofilm in other staphylococci. However, we discovered that biofilm formed by a panel of S. lugdunensis isolates growing in iron-restricted medium was susceptible to degradation by proteases and not by metaperiodate, suggesting that the biofilm matrix comprised proteins and not PNAG. When the iron concentration was raised to 1 mM biofilm formation by all strains tested was greatly reduced. A mutant of strain N920143 lacking the entire locus that encodes iron-regulated surface determinant (Isd) proteins was defective in biofilm formation under iron-limited conditions. An IsdC-null mutant was defective, whereas IsdK, IsdJ, and IsdB mutants formed biofilm to the same level as the parental strain. Expression of IsdC was required both for the primary attachment to unconditioned polystyrene and for the accumulation phase of biofilm involving cell-cell interactions. Purified recombinant IsdC protein formed dimers in solution and Lactococcus lactis cells expressing only IsdC adhered to immobilized recombinant IsdC but not to IsdJ, IsdK, or IsdB. This is consistent with a specific homophilic interaction between IsdC molecules on neighboring cells contributing to accumulation of S. lugdunensis biofilm in vivo.


Asunto(s)
Proteínas Bacterianas/fisiología , Biopelículas/crecimiento & desarrollo , Proteínas Portadoras/fisiología , Hierro/metabolismo , Infecciones Estafilocócicas/microbiología , Staphylococcus lugdunensis/fisiología , Análisis de Varianza , Adhesión Bacteriana/fisiología , Proteínas Bacterianas/metabolismo , Western Blotting , Proteínas Portadoras/metabolismo , Medios de Cultivo/química , Regulación Bacteriana de la Expresión Génica , Humanos , Proteínas Recombinantes/metabolismo
12.
Nanotechnology ; 25(27): 275601, 2014 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-24960172

RESUMEN

This work reports experimental findings about the evolution of lateral ordering of lamellar microdomains in symmetric PS-b-PMMA thin films on featureless substrates. Phase separation and microdomain evolution are explored in a rather wide range of temperatures (190-340 °C) using a rapid thermal processing (RTP) system. The maximum processing temperature that enables the ordering of block copolymers without introducing any significant degradation of macromolecules is identified. The reported results clearly indicate that the range of accessible temperatures in the processing of these self-assembling materials is mainly limited by the thermal instability of the grafted random copolymer layer, which starts to degrade at T > 300 °C, inducing detachment of the block copolymer thin film. For T ⩽ 290 °C, clear dependence of correlation length (ξ) values on temperature is observed. The highest level of lateral order achievable in the current system in a quasi-equilibrium condition was obtained at the upper processing temperature limit after an annealing time as short as 60 s.

13.
Nanotechnology ; 25(4): 045301, 2014 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-24394198

RESUMEN

The phase behaviour in thin films of an asymmetric polystyrene-b-polymethylmethacrylate (PS-b-PMMA) block copolymer with a molecular weight of 39 kg mol(-1) was assessed at a wide range of temperatures and times. Cylindrical PMMA structures featuring a diameter close to 10 nm and perpendicularly oriented with respect to the substrate were obtained at 180 °C in relatively short annealing times (t ≤ 30 min) by means of a simple thermal treatment performed in a standard rapid thermal processing machine.

14.
Toxics ; 12(4)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38668523

RESUMEN

The implementation of recycling techniques represents a potential solution to the plastic pollution issue. To date, only a limited number of plastic polymers can be efficiently recycled. In the Italian plastic waste stream, the residual, non-homogeneous fraction is called 'Plasmix' and is intended for low-value uses. However, Plasmix can be used to create new materials through mechanical recycling, which need to be tested for their eco-safety. This study aimed to investigate the potential toxicity of two amounts (0.1% and 1% MPs in soil weight) of microplastics (MPs) made of naïve and additivated Plasmix-based materials (Px and APx, respectively) on the earthworm Eisenia foetida. Changes in oxidative status and oxidative damage, survival, gross growth rate and reproductive output were considered as endpoints. Although earthworms ingested both MP types, earthworms did not suffer an oxidative stress condition or growth and reproductive impairments. The results suggested that exposure to low amounts of both MPs can be considered as safe for earthworms. However, further studies testing a higher amount or longer exposure time on different model species are necessary to complete the environmental risk assessment of these new materials.

15.
Environ Pollut ; 363(Pt 1): 125146, 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39424052

RESUMEN

The implementation of advanced recycling techniques represents a key strategy for mitigating the mismanagement and the environmental impact of plastic waste. A limited array of plastic polymers can be efficiently recycled, while a notable portion of plastic waste remains unrecyclable. In Italy, this residual, heterogeneous fraction is referred to as Plasmix. Because of its complexity and non-homogeneous composition, Plasmix is primarily directed towards low-value applications. However, recent developments in laboratory-scale mechanical recycling have enabled the creation of new plastic materials from Plasmix. Prior to their application, these materials must undergo rigorous eco-safety evaluation. The present study aims to assess the potential toxicity of microplastics (MPs) from Plasmix-based materials on the freshwater crustacean Daphnia magna. Specifically, this study investigated sub-individual and individual effects induced by a 21-day exposure to different concentrations of MPs generated from the grinding of naïve and Additivated Plasmix-based materials (hereafter referred to as Px-MPs and APx-MPs, respectively). Sub-individual endpoints focused on changes in oxidative status, including the modulation of antioxidant and detoxifying enzyme activities, as well as oxidative damage, such as lipid peroxidation. Individual level endpoints included alterations in survival and reproduction. Microscopy analyses confirmed the ingestion of both Px-MPs and APx-MPs by D. magna individuals. An oxidative stress condition raised in organisms exposed to Px-MPs, whereas no effect was observed in individuals exposed to APx-MPs. Although survival was not affected, a significant impairment in reproductive output was detected at the end of exposure to all the concentrations of both MP types. These findings suggest that even low concentrations of Px-MPs and APx-MPs could negatively affect the health status of D. magna, underscoring the need for further research to complete the risk assessment of Plasmix-based materials prior to their use in consumer products.

16.
Toxics ; 12(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38922088

RESUMEN

Microplastic pollution is a pervasive global issue affecting various ecosystems. Despite the escalating production and well-documented contamination in both aquatic and terrestrial environments, the research focused on airborne microplastics and their interaction with terrestrial birds remains limited. In this study, we collected fecal sacs from Common swifts (Apus apus) to investigate their diet and to evaluate the potential ingestion of microplastics by both adults and nestlings. The diet was mainly composed of Hymenoptera and Coleoptera and did not differ among sexes and age classes. The 33% of nestlings' and 52% of adults' fecal sacs contained anthropogenic items, the totality of which was in the shape form of fibers. The 19.4% of the anthropogenic items were chemically characterized as microplastics, either polyethylene terephthalate (PET; two microfibers) or cellophane (four microfibers). Airborne anthropogenic items, including microplastic, might be passively ingested during the Common swift aerial feeding. In addition, our findings suggest that these ingested microparticles have the potential to be transferred to the offspring through food. While further research is essential to elucidate the pathways of microplastic ingestion, our results reinforce the evidence of the transfer of anthropogenic items from the atmosphere to the biota.

17.
Environ Sci Pollut Res Int ; 31(24): 35864-35877, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38743335

RESUMEN

Microplastic (MP) contamination represents an issue of global concern for both aquatic and terrestrial ecosystems, but only in recent years, the study of MPs has been focused on freshwaters. Several monitoring surveys have detected the presence of a wide array of MPs differing in size, shape, and polymer composition in rivers and lakes worldwide. Because of their role of sink for plastic particles, the abundance of MPs was investigated in waters, and deep and shoreline sediments from diverse lakes, confirming the ubiquity of this contamination. Although diverse factors, including those concerning anthropogenic activities and physical characteristics of lakes, have been supposed to affect MP abundances, very few studies have directly addressed these links. Thus, the aim of the present study was to explore the levels of MP contamination in mountain and subalpine lakes from Northern Italy. Fourteen lakes dislocated at different altitudes and characterized by dissimilar anthropic pressures were visited. Lakeshore sediments were collected close to the drift line to assess MPs contamination. Our results showed the presence of MPs in lakeshore sediments from all the lakes, with a mean (± standard deviation) expressed as MPs/Kg dry sediment accounting to 14.42 ± 13.31 (range 1.57-61.53), while expressed as MPs/m2, it was 176.07 ± 172.83 (range 25.00-666.67). The MP abundance measured for Garda Lake was significantly higher compared to all the other ones (F1,13 = 7.344; P < 0.001). The pattern of contamination was dominated by fibers in all the lakes, but they were the main contributors in mountain lakes. These findings showed that the MP abundance varied according to the altitude of the lakes, with higher levels measured in subalpine lakes located at low altitudes and surrounded by populated areas.


Asunto(s)
Monitoreo del Ambiente , Sedimentos Geológicos , Lagos , Microplásticos , Contaminantes Químicos del Agua , Lagos/química , Italia , Sedimentos Geológicos/química , Microplásticos/análisis , Contaminantes Químicos del Agua/análisis , Altitud
18.
Pharmaceutics ; 15(3)2023 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-36986775

RESUMEN

Antimicrobial resistance related to the misuse of antibiotics is a well-known current topic. Their excessive use in several fields has led to enormous selective pressure on pathogenic and commensal bacteria, driving the evolution of antimicrobial resistance genes with severe impacts on human health. Among all the possible strategies, a viable one could be the development of medical features that employ essential oils (EOs), complex natural mixtures extracted from different plant organs, rich in organic compounds showing, among others, antiseptic properties. In this work, green extracted essential oil of Thymus vulgaris was included in cyclic oligosaccharides cyclodextrins (CD) and prepared in the form of tablets. This essential oil has been shown to have a strong transversal efficacy both as an antifungal and as an antibacterial agent. Its inclusion allows its effective use because an extension of the exposure time to the active compounds is obtained and, therefore, a more marked efficacy, especially against biofilm-producing microorganisms such as P. aeruginosa and S. aureus, was registered. The efficacy of the tablet against candidiasis opens their possible use as a chewable tablet against oral candidiasis and as a vaginal tablet against vaginal candidiasis. Moreover, the registered wide efficacy is even more positive since the proposed approach can be defined as effective, safe, and green. In fact, the natural mixture of the essential oil is produced by the steam current method; therefore, the manufacturer employs substances that are not harmful, with very low production and management costs.

19.
Biology (Basel) ; 11(7)2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-36101458

RESUMEN

As dramatically experienced in the recent world pandemic, viral, bacterial, fungal pathogens constitute very serious concerns in the global context of human health. Regarding this issue, the World Health Organization has promoted research studies that aim to develop new strategies using natural products. Although they are often competitive with synthetic pharmaceuticales in clinical performance, they lack their critical drawbacks, i.e., the environmental impact and the high economic costs of processing. In this paper, the isolation of a highly performant antibacterial and antifungal lipophilic natural mixture from leaves of savoy and white cabbages is proposed as successful preliminary results for the valorization of agricultural waste produced in cabbage cultivation. The fraction was chemically extracted from vegetables with diethyl ether and tested against two Candida species, as well as Pseudomonas aeruginosa, Klebsiella pneumoniae and Staphylococcus aureus reference strains. All the different fractions (active and not active) were chemically characterized by vibrational FT-IR spectroscopy and GC-MS analyses. The extracts showed high growth-inhibition performance on pathogens, thus demonstrating strong application potential. We think that this work, despite being at a preliminary stage, is very promising, both from pharmaceutical and industrial points of view, and can be proposed as a proof of concept for the recovery of agricultural production wastes.

20.
Mar Pollut Bull ; 182: 114030, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35964431

RESUMEN

Microplastics are increasingly pervasive pollutants, particularly abundant in the neuston where they drift with currents. We assessed dietary microplastic ingestion in the Mediterranean storm petrel (Hydrobates pelagicus melitensis), a small pelagic seabird that forages on plankton and inhabit the Mediterranean sea, one of the most polluted seas worldwide. We collected spontaneous regurgitates from 30 chick-rearing individuals and used GPS tracking data from 7 additional individuals to locate foraging areas. Birds foraged in pelagic areas characterized by water stirring and mixing, and regurgitates from 14 individuals (i.e. 45 %) contained microplastics. Fibers were the dominant shape (56 %), with polyester, polyethylene and nylon being the most frequent polymers. Our findings highlight the potential sensitivity of this species of conservation interest to plastic pollution and suggest that storm petrel regurgitates can be a valuable matrix to investigate microplastic ingestion in planktonic foragers, providing a characterization of spatio-temporal patterns of microplastic exposure in pelagic environments.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Animales , Aves , Ingestión de Alimentos , Monitoreo del Ambiente , Humanos , Mar Mediterráneo , Plancton , Plásticos , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA