Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Biol Chem ; 299(3): 102960, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36736426

RESUMEN

Early diabetic kidney disease (DKD) is marked by dramatic metabolic reprogramming due to nutrient excess, mitochondrial dysfunction, and increased renal energy requirements from hyperfiltration. We hypothesized that changes in metabolism in DKD may be regulated by Sirtuin 5 (SIRT5), a deacylase that removes posttranslational modifications derived from acyl-coenzyme A and has been demonstrated to regulate numerous metabolic pathways. We found decreased malonylation in the kidney cortex (∼80% proximal tubules) of type 2 diabetic BKS db/db mice, associated with increased SIRT5 expression. We performed a proteomics analysis of malonylated peptides and found that proteins with significantly decreased malonylated lysines in the db/db cortex were enriched in nonmitochondrial metabolic pathways: glycolysis and peroxisomal fatty acid oxidation. To confirm relevance of these findings in human disease, we analyzed diabetic kidney transcriptomic data from a cohort of Southwestern American Indians, which revealed a tubulointerstitial-specific increase in Sirt5 expression. These data were further corroborated by immunofluorescence data of SIRT5 from nondiabetic and DKD cohorts. Furthermore, overexpression of SIRT5 in cultured human proximal tubules demonstrated increased aerobic glycolysis. Conversely, we observed reduced glycolysis with decreased SIRT5 expression. These findings suggest that SIRT5 may lead to differential nutrient partitioning and utilization in DKD. Taken together, our findings highlight a previously unrecognized role for SIRT5 in metabolic reprogramming in DKD.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Sirtuinas , Animales , Humanos , Ratones , Ciclo del Ácido Cítrico , Nefropatías Diabéticas/metabolismo , Glucólisis , Redes y Vías Metabólicas , Sirtuinas/metabolismo , Indígenas Norteamericanos
2.
Trends Genet ; 30(7): 271-86, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24877878

RESUMEN

The first link between sirtuins and longevity was made 15 years ago in yeast. These initial studies sparked efforts by many laboratories working in diverse model organisms to elucidate the relations between sirtuins, lifespan, and age-associated dysfunction. Here, we discuss the current understanding of how sirtuins relate to aging. We focus primarily on mammalian sirtuins SIRT1, SIRT3, and SIRT6, the three sirtuins for which the most relevant data are available. Strikingly, a large body of evidence now indicates that these and other mammalian sirtuins suppress a variety of age-related pathologies and promote healthspan. Moreover, increased expression of SIRT1 or SIRT6 extends mouse lifespan. Overall, these data point to important roles for sirtuins in promoting mammalian health, and perhaps in modulating the aging process.


Asunto(s)
Longevidad/genética , Sirtuinas/genética , Envejecimiento/genética , Envejecimiento/metabolismo , Animales , Estudios de Asociación Genética , Humanos , Mamíferos , Ratones , Fenotipo , Sirtuinas/metabolismo
3.
Hum Mol Genet ; 20(4): 806-19, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21147755

RESUMEN

The Artemis gene encodes a DNA nuclease that plays important roles in non-homologous end-joining (NHEJ), a major double-strand break (DSB) repair pathway in mammalian cells. NHEJ factors repair general DSBs as well as programmed breaks generated during the lymphoid-specific DNA rearrangement, V(D)J recombination, which is required for lymphocyte development. Mutations that inactivate Artemis cause a human severe combined immunodeficiency syndrome associated with cellular radiosensitivity. In contrast, hypomorphic Artemis mutations result in combined immunodeficiency syndromes of varying severity, but, in addition, are hypothesized to predispose to lymphoid malignancy. To elucidate the distinct molecular defects caused by hypomorphic compared with inactivating Artemis mutations, we examined tumor predisposition in a mouse model harboring a targeted partial loss-of-function disease allele. We find that, in contrast to Artemis nullizygosity, the hypomorphic mutation leads to increased aberrant intra- and interchromosomal V(D)J joining events. We also observe that dysfunctional Artemis activity combined with p53 inactivation predominantly predisposes to thymic lymphomas harboring clonal translocations distinct from those observed in Artemis nullizygosity. Thus, the Artemis hypomorphic allele results in unique molecular defects, tumor spectrum and oncogenic chromosomal rearrangements. Our findings have significant implications for disease outcomes and treatment of patients with different Artemis mutations.


Asunto(s)
Alelos , Aberraciones Cromosómicas , Reordenamiento Génico , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Inmunodeficiencia Combinada Grave/genética , Inmunodeficiencia Combinada Grave/metabolismo , Animales , Daño del ADN , Proteínas de Unión al ADN , Modelos Animales de Enfermedad , Endonucleasas , Humanos , Linfoma/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Cariotipificación Espectral , Análisis de Supervivencia , Proteína p53 Supresora de Tumor/genética
4.
Hum Mutat ; 33(1): 244-53, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22009580

RESUMEN

Charcot-Marie-Tooth (CMT) disease comprises a heterogeneous group of peripheral neuropathies characterized by muscle weakness and wasting, and impaired sensation in the extremities. Four genes encoding an aminoacyl-tRNA synthetase (ARS) have been implicated in CMT disease. ARSs are ubiquitously expressed, essential enzymes that ligate amino acids to cognate tRNA molecules. Recently, a p.Arg329His variant in the alanyl-tRNA synthetase (AARS) gene was found to segregate with dominant axonal CMT type 2N (CMT2N) in two French families; however, the functional consequence of this mutation has not been determined. To investigate the role of AARS in CMT, we performed a mutation screen of the AARS gene in patients with peripheral neuropathy. Our results showed that p.Arg329His AARS also segregated with CMT disease in a large Australian family. Aminoacylation and yeast viability assays showed that p.Arg329His AARS severely reduces enzyme activity. Genotyping analysis indicated that this mutation arose on three distinct haplotypes, and the results of bisulfite sequencing suggested that methylation-mediated deamination of a CpG dinucleotide gives rise to the recurrent p.Arg329His AARS mutation. Together, our data suggest that impaired tRNA charging plays a role in the molecular pathology of CMT2N, and that patients with CMT should be directly tested for the p.Arg329His AARS mutation.


Asunto(s)
Alanina-ARNt Ligasa/genética , Enfermedad de Charcot-Marie-Tooth/genética , Mutación , Aminoacilación de ARN de Transferencia/genética , Alanina-ARNt Ligasa/metabolismo , Aminoacilación , Arginina/genética , Arginina/metabolismo , Australia , Axones , Estudios de Casos y Controles , Enfermedad de Charcot-Marie-Tooth/metabolismo , Enfermedad de Charcot-Marie-Tooth/patología , Islas de CpG , Femenino , Francia , Genes Dominantes , Ligamiento Genético , Haplotipos , Histidina/genética , Histidina/metabolismo , Humanos , Masculino , Datos de Secuencia Molecular , Linaje , Levaduras
5.
Blood ; 113(13): 2965-75, 2009 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-19126872

RESUMEN

The RAG1/2 endonuclease initiates programmed DNA rearrangements in progenitor lymphocytes by generating double-strand breaks at specific recombination signal sequences. This process, known as V(D)J recombination, assembles the vastly diverse antigen receptor genes from numerous V, D, and J coding segments. In vitro biochemical and cellular transfection studies suggest that RAG1/2 may also play postcleavage roles by forming complexes with the recombining ends to facilitate DNA end processing and ligation. In the current study, we examine the in vivo consequences of a mutant form of RAG1, RAG1-S723C, that is proficient for DNA cleavage, yet exhibits defects in postcleavage complex formation and end joining in vitro. We generated a knockin mouse model harboring the RAG1-S723C hypomorphic mutation and examined the immune system in this fully in vivo setting. RAG1-S723C homozygous mice exhibit impaired lymphocyte development and decreased V(D)J rearrangements. Distinct from RAG nullizygosity, the RAG1-S723C hypomorph results in aberrant DNA double-strand breaks within rearranging loci. RAG1-S723C also predisposes to thymic lymphomas associated with chromosomal translocations in a p53 mutant background, and heterozygosity for the mutant allele accelerates age-associated immune system dysfunction. Thus, our study provides in vivo evidence that implicates aberrant RAG1/2 activity in lymphoid tumor development and premature immunosenescence.


Asunto(s)
Reordenamiento Génico/genética , Proteínas de Homeodominio/genética , Mutación Missense , Inmunodeficiencia Combinada Grave/genética , Envejecimiento/genética , Envejecimiento/inmunología , Sustitución de Aminoácidos/fisiología , Animales , Linfocitos B/inmunología , Linfocitos B/patología , Técnicas de Sustitución del Gen , Homocigoto , Linfoma/genética , Linfoma/inmunología , Ratones , Ratones Transgénicos , Mutación Missense/fisiología , Fenotipo , Inmunodeficiencia Combinada Grave/inmunología , Inmunodeficiencia Combinada Grave/patología , Linfocitos T/inmunología , Linfocitos T/patología , Neoplasias del Timo/genética , Neoplasias del Timo/inmunología , Exones VDJ
6.
J Clin Invest ; 131(12)2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33945506

RESUMEN

Cutaneous melanoma remains the most lethal skin cancer, and ranks third among all malignancies in terms of years of life lost. Despite the advent of immune checkpoint and targeted therapies, only roughly half of patients with advanced melanoma achieve a durable remission. Sirtuin 5 (SIRT5) is a member of the sirtuin family of protein deacylases that regulates metabolism and other biological processes. Germline Sirt5 deficiency is associated with mild phenotypes in mice. Here we showed that SIRT5 was required for proliferation and survival across all cutaneous melanoma genotypes tested, as well as uveal melanoma, a genetically distinct melanoma subtype that arises in the eye and is incurable once metastatic. Likewise, SIRT5 was required for efficient tumor formation by melanoma xenografts and in an autochthonous mouse Braf Pten-driven melanoma model. Via metabolite and transcriptomic analyses, we found that SIRT5 was required to maintain histone acetylation and methylation levels in melanoma cells, thereby promoting proper gene expression. SIRT5-dependent genes notably included MITF, a key lineage-specific survival oncogene in melanoma, and the c-MYC proto-oncogene. SIRT5 may represent a druggable genotype-independent addiction in melanoma.


Asunto(s)
Cromatina/enzimología , Melanoma Experimental/enzimología , Melanoma/enzimología , Sirtuinas/metabolismo , Neoplasias Cutáneas/enzimología , Animales , Cromatina/genética , Melanoma/genética , Melanoma/patología , Melanoma Experimental/genética , Melanoma Experimental/patología , Ratones , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Sirtuinas/genética , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Melanoma Cutáneo Maligno
7.
Diabetes ; 66(10): 2535-2537, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28931553
8.
J Exp Med ; 206(4): 893-908, 2009 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-19349461

RESUMEN

Artemis was initially discovered as the gene inactivated in human radiosensitive T(-)B(-) severe combined immunodeficiency, a syndrome characterized by the absence of B and T lymphocytes and cellular hypersensitivity to ionizing radiation. Hypomorphic Artemis alleles have also been identified in patients and are associated with combined immunodeficiencies of varying severity. We examine the molecular mechanisms underlying a syndrome of partial immunodeficiency caused by a hypomorphic Artemis allele using the mouse as a model system. This mutation, P70, leads to premature translation termination that deletes a large portion of a nonconserved C terminus. We find that homozygous Artemis-P70 mice exhibit reduced numbers of B and T lymphocytes, thereby recapitulating the patient phenotypes. The hypomorphic mutation results in impaired end processing during the lymphoid-specific DNA rearrangement known as V(D)J recombination, defective double-strand break repair, and increased chromosomal instability. Biochemical analyses reveal that the Artemis-P70 mutant protein interacts with the DNA-dependent protein kinase catalytic subunit and retains significant, albeit reduced, exo- and endonuclease activities but does not undergo phosphorylation. Together, our findings indicate that the Artemis C terminus has critical in vivo functions in ensuring efficient V(D)J rearrangements and maintaining genome integrity.


Asunto(s)
Genoma Humano , Genoma , Inmunodeficiencia Combinada Grave/genética , Animales , Daño del ADN , Modelos Animales de Enfermedad , Reordenamiento Génico/inmunología , Humanos , Ratones , Ratones Transgénicos , Mutación , ARN/genética , ARN/aislamiento & purificación , Linfocitos T/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA