Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Wellcome Open Res ; 8: 267, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37799509

RESUMEN

Background: The endosymbiotic bacterium Wolbachia infects numerous species of insects and Wolbachia transinfection of Aedes mosquito species is now being used for biocontrol programs as Wolbachia strains can both inhibit arboviruses and invade wild mosquito populations. The discovery of novel, resident Wolbachia strains in mosquito species warrants further investigation as potential candidate strains for biocontrol strategies. Methods: We obtained mosquito specimens from diverse Culicine mosquitoes from Cameroon including ecologically diverse locations in the Central and West Regions. Wolbachia prevalence rates were assessed in addition to the environmentally acquired bacterial species Asaia in major Culicine genera. PCR-based methods were also used with phylogenetic analysis to confirm identities of host mosquito species and Wolbachia strains were classified using multi-locus sequence typing (MLST). Results: We report high Wolbachia prevalence rates for Culicine species, including in a large cohort of Aedes africanus collected from west Cameroon in which 100% of mono-specific pools were infected. Furthermore, co-infections with Asaia bacteria were observed across multiple genera, demonstrating that these two bacteria can co-exist in wild mosquito populations.  Wolbachia strain MLST and phylogenetic analysis provided evidence for diverse Wolbachia strains in 13 different mosquito species across seven different genera.  Full or partial MLST profiles were generated from resident Wolbachia strains in six Culex species ( quinquefasciatus, watti, cinerus, nigripalpus, perexiguus and rima), two Aedes species (africanus and denderensis) and in Mansonia uniformis, Catageiomyia argenteopunctata, Lutzia tigripes, Eretmapodites chrysogaster and Uranotaenia bilineata. Conclusions: Our study provides further evidence that Wolbachia is widespread within wild mosquito populations of diverse Culicine species and provides further candidate strains that could be investigated as future options for Wolbachia-based biocontrol to inhibit arbovirus transmission.

2.
Curr Biol ; 31(11): 2310-2320.e5, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33857432

RESUMEN

Wolbachia, a widespread bacterium that can reduce pathogen transmission in mosquitoes, has recently been reported to be present in Anopheles (An.) species. In wild populations of the An. gambiae complex, the primary vectors of Plasmodium malaria in Sub-Saharan Africa, Wolbachia DNA sequences at low density and infection frequencies have been detected. As the majority of studies have used highly sensitive nested PCR as the only method of detection, more robust evidence is required to determine whether Wolbachia strains are established as endosymbionts in Anopheles species. Here, we describe high-density Wolbachia infections in geographically diverse populations of An. moucheti and An. demeilloni. Fluorescent in situ hybridization localized a heavy infection in the ovaries of An. moucheti, and maternal transmission was observed. Genome sequencing of both Wolbachia strains obtained genome depths and coverages comparable to those of other known infections. Notably, homologs of cytoplasmic incompatibility factor (cif) genes were present, indicating that these strains possess the capacity to induce the cytoplasmic incompatibility phenotype, which allows Wolbachia to spread through host populations. These strains should be further investigated as candidates for use in Wolbachia biocontrol strategies in Anopheles aiming to reduce the transmission of malaria.


Asunto(s)
Anopheles , Malaria , Wolbachia , Animales , Anopheles/genética , Hibridación Fluorescente in Situ , Herencia Materna , Mosquitos Vectores , Wolbachia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA