RESUMEN
The highly transmissible B.1.1.7 variant of SARS-CoV-2, first identified in the United Kingdom, has gained a foothold across the world. Using S gene target failure (SGTF) and SARS-CoV-2 genomic sequencing, we investigated the prevalence and dynamics of this variant in the United States (US), tracking it back to its early emergence. We found that, while the fraction of B.1.1.7 varied by state, the variant increased at a logistic rate with a roughly weekly doubling rate and an increased transmission of 40%-50%. We revealed several independent introductions of B.1.1.7 into the US as early as late November 2020, with community transmission spreading it to most states within months. We show that the US is on a similar trajectory as other countries where B.1.1.7 became dominant, requiring immediate and decisive action to minimize COVID-19 morbidity and mortality.
Asunto(s)
COVID-19 , Modelos Biológicos , SARS-CoV-2 , COVID-19/genética , COVID-19/mortalidad , COVID-19/transmisión , Femenino , Humanos , Masculino , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Estados Unidos/epidemiologíaRESUMEN
Through their domestication and subsequent selection, sheep have been adapted to thrive in a diverse range of environments. To characterise the genetic consequence of both domestication and selection, we genotyped 49,034 SNP in 2,819 animals from a diverse collection of 74 sheep breeds. We find the majority of sheep populations contain high SNP diversity and have retained an effective population size much higher than most cattle or dog breeds, suggesting domestication occurred from a broad genetic base. Extensive haplotype sharing and generally low divergence time between breeds reveal frequent genetic exchange has occurred during the development of modern breeds. A scan of the genome for selection signals revealed 31 regions containing genes for coat pigmentation, skeletal morphology, body size, growth, and reproduction. We demonstrate the strongest selection signal has occurred in response to breeding for the absence of horns. The high density map of genetic variability provides an in-depth view of the genetic history for this important livestock species.
Asunto(s)
Selección Genética , Ovinos/genética , África , Animales , Asia , Europa (Continente) , Frecuencia de los Genes , Genoma , Modelos Genéticos , Filogenia , Filogeografía , Polimorfismo de Nucleótido Simple , Análisis de Componente PrincipalRESUMEN
As of January of 2021, the highly transmissible B.1.1.7 variant of SARS-CoV-2, which was first identified in the United Kingdom (U.K.), has gained a strong foothold across the world. Because of the sudden and rapid rise of B.1.1.7, we investigated the prevalence and growth dynamics of this variant in the United States (U.S.), tracking it back to its early emergence and onward local transmission. We found that the RT-qPCR testing anomaly of S gene target failure (SGTF), first observed in the U.K., was a reliable proxy for B.1.1.7 detection. We sequenced 212 B.1.1.7 SARS-CoV-2 genomes collected from testing facilities in the U.S. from December 2020 to January 2021. We found that while the fraction of B.1.1.7 among SGTF samples varied by state, detection of the variant increased at a logistic rate similar to those observed elsewhere, with a doubling rate of a little over a week and an increased transmission rate of 35-45%. By performing time-aware Bayesian phylodynamic analyses, we revealed several independent introductions of B.1.1.7 into the U.S. as early as late November 2020, with onward community transmission enabling the variant to spread to at least 30 states as of January 2021. Our study shows that the U.S. is on a similar trajectory as other countries where B.1.1.7 rapidly became the dominant SARS-CoV-2 variant, requiring immediate and decisive action to minimize COVID-19 morbidity and mortality.
RESUMEN
Telomerase is a ribonucleoprotein responsible for maintaining telomeres in nearly all eukaryotic cells. The enzyme is able to utilize a short segment of its RNA subunit as the template for the reverse transcription of d(TTAGGG) repeats onto the ends of human chromosomes. Transfection with telomerase was shown to confer immortality on several types of human cells. Moreover, telomerase activation appears to be one of the key events required for malignant transformation of normal cells. Inhibition of telomerase activity in transformed cells results in the cessation of cell proliferation in cultures and provides the rationale for the selection of telomerase as a target for anticancer therapy. Using oligonucleotide N3'-->P5' phosphoramidates (NPs) we have identified a region of the human telomerase RNA subunit (hTR) approximately 100 nt downstream from the template region whose structural integrity appears crucial for telomerase enzymatic activity. The oligonucleotides targeted to this segment of hTR are potent and specific inhibitors of telomerase activity in biochemical assays. Mutant telomerase, in which 3 nt of hTR were not complementary to a 15 nt NP, was found to be refractory to inhibition by that oligonucleotide. We also demonstrated that the binding of NP, oligonucleotides to this hTR allosteric site results in a marked decrease in the affinity of a telomerase substrate (single-stranded DNA primer) for the enzyme.
Asunto(s)
Sitio Alostérico , Amidas/metabolismo , Oligonucleótidos/metabolismo , Ácidos Fosfóricos/metabolismo , ARN/antagonistas & inhibidores , Telomerasa/antagonistas & inhibidores , Regulación Alostérica , Animales , Secuencia de Bases , Células COS , Línea Celular , Cartilla de ADN/genética , Cartilla de ADN/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN , Humanos , Concentración 50 Inhibidora , Cinética , Datos de Secuencia Molecular , Mutación/genética , Conformación de Ácido Nucleico , Oligonucleótidos/genética , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/metabolismo , ARN/química , ARN/genética , ARN/metabolismo , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/metabolismo , Telomerasa/química , Telomerasa/genética , Telomerasa/metabolismo , Moldes Genéticos , TermodinámicaRESUMEN
The Illumina BovineLD BeadChip was designed to support imputation to higher density genotypes in dairy and beef breeds by including single-nucleotide polymorphisms (SNPs) that had a high minor allele frequency as well as uniform spacing across the genome except at the ends of the chromosome where densities were increased. The chip also includes SNPs on the Y chromosome and mitochondrial DNA loci that are useful for determining subspecies classification and certain paternal and maternal breed lineages. The total number of SNPs was 6,909. Accuracy of imputation to Illumina BovineSNP50 genotypes using the BovineLD chip was over 97% for most dairy and beef populations. The BovineLD imputations were about 3 percentage points more accurate than those from the Illumina GoldenGate Bovine3K BeadChip across multiple populations. The improvement was greatest when neither parent was genotyped. The minor allele frequencies were similar across taurine beef and dairy breeds as was the proportion of SNPs that were polymorphic. The new BovineLD chip should facilitate low-cost genomic selection in taurine beef and dairy cattle.