Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Mol Cell ; 82(7): 1343-1358.e8, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35271816

RESUMEN

Nucleotide excision repair (NER) counteracts the onset of cancer and aging by removing helix-distorting DNA lesions via a "cut-and-patch"-type reaction. The regulatory mechanisms that drive NER through its successive damage recognition, verification, incision, and gap restoration reaction steps remain elusive. Here, we show that the RAD5-related translocase HLTF facilitates repair through active eviction of incised damaged DNA together with associated repair proteins. Our data show a dual-incision-dependent recruitment of HLTF to the NER incision complex, which is mediated by HLTF's HIRAN domain that binds 3'-OH single-stranded DNA ends. HLTF's translocase motor subsequently promotes the dissociation of the stably damage-bound incision complex together with the incised oligonucleotide, allowing for an efficient PCNA loading and initiation of repair synthesis. Our findings uncover HLTF as an important NER factor that actively evicts DNA damage, thereby providing additional quality control by coordinating the transition between the excision and DNA synthesis steps to safeguard genome integrity.


Asunto(s)
Reparación del ADN , Proteínas de Unión al ADN , ADN/genética , ADN/metabolismo , Daño del ADN , Replicación del ADN , Proteínas de Unión al ADN/genética
2.
Nucleic Acids Res ; 52(6): 3031-3049, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38281187

RESUMEN

Histone variants are key epigenetic players, but their functional and physiological roles remain poorly understood. Here, we show that depletion of the histone variant H2A.Z in mouse skeletal muscle causes oxidative stress, oxidation of proteins, accumulation of DNA damages, and both neuromuscular junction and mitochondria lesions that consequently lead to premature muscle aging and reduced life span. Investigation of the molecular mechanisms involved shows that H2A.Z is required to initiate DNA double strand break repair by recruiting Ku80 at DNA lesions. This is achieved via specific interactions of Ku80 vWA domain with H2A.Z. Taken as a whole, our data reveal that H2A.Z containing nucleosomes act as a molecular platform to bring together the proteins required to initiate and process DNA double strand break repair.


Asunto(s)
Envejecimiento Prematuro , Histonas , Fibras Musculares Esqueléticas , Animales , Ratones , Envejecimiento Prematuro/genética , ADN , Roturas del ADN de Doble Cadena , Histonas/genética , Histonas/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Nucleosomas
3.
Proc Natl Acad Sci U S A ; 115(29): E6770-E6779, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29967171

RESUMEN

Nucleotide excision repair (NER) guarantees genome integrity against UV light-induced DNA damage. After UV irradiation, cells have to cope with a general transcriptional block. To ensure UV lesions repair specifically on transcribed genes, NER is coupled with transcription in an extremely organized pathway known as transcription-coupled repair. In highly metabolic cells, more than 60% of total cellular transcription results from RNA polymerase I activity. Repair of the mammalian transcribed ribosomal DNA has been scarcely studied. UV lesions severely block RNA polymerase I activity and the full transcription-coupled repair machinery corrects damage on actively transcribed ribosomal DNAs. After UV irradiation, RNA polymerase I is more bound to the ribosomal DNA and both are displaced to the nucleolar periphery. Importantly, the reentry of RNA polymerase I and the ribosomal DNA is dependent on the presence of UV lesions on DNA and independent of transcription restart.


Asunto(s)
Reparación del ADN , ADN Ribosómico/metabolismo , ARN Polimerasa I/metabolismo , Transcripción Genética , Línea Celular Transformada , ADN Ribosómico/genética , Humanos , ARN Polimerasa I/genética , Rayos Ultravioleta
4.
J Biol Chem ; 293(39): 14974-14988, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-30068551

RESUMEN

The human transcription factor TFIIH is a large complex composed of 10 subunits that form an intricate network of protein-protein interactions critical for regulating its transcriptional and DNA repair activities. The trichothiodystrophy group A protein (TTD-A or p8) is the smallest TFIIH subunit, shuttling between a free and a TFIIH-bound state. Its dimerization properties allow it to shift from a homodimeric state, in the absence of a functional partner, to a heterodimeric structure, enabling dynamic binding to TFIIH. Recruitment of p8 at TFIIH stabilizes the overall architecture of the complex, whereas p8's absence reduces its cellular steady-state concentration and consequently decreases basal transcription, highlighting that p8 dimerization may be an attractive target for down-regulating transcription in cancer cells. Here, using a combination of molecular dynamics simulations to study p8 conformational stability and a >3000-member library of chemical fragments, we identified small-molecule compounds that bind to the dimerization interface of p8 and provoke its destabilization, as assessed by biophysical studies. Using quantitative imaging of TFIIH in living mouse cells, we found that these molecules reduce the intracellular concentration of TFIIH and its transcriptional activity to levels similar to that observed in individuals with trichothiodystrophy owing to mutated TTD-A Our results provide a proof of concept of fragment-based drug discovery, demonstrating the utility of small molecules for targeting p8 dimerization to modulate the transcriptional machinery, an approach that may help inform further development in anticancer therapies.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Proteínas de Neoplasias/química , Neoplasias/tratamiento farmacológico , Bibliotecas de Moléculas Pequeñas/química , Factor de Transcripción TFIIH/química , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Cristalografía por Rayos X , Reparación del ADN/efectos de los fármacos , Dimerización , Humanos , Ratones , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patología , Conformación Proteica/efectos de los fármacos , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Bibliotecas de Moléculas Pequeñas/farmacología , Factor de Transcripción TFIIH/genética
5.
Cancer Cell Int ; 19: 237, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31516394

RESUMEN

BACKGROUND: The basal transcription/repair factor TFIIH is a ten sub-unit complex essential for RNA polymerase II (RNAP2) transcription initiation and DNA repair. In both these processes TFIIH acts as a DNA helix opener, required for promoter escape of RNAP2 in transcription initiation, and to set the stage for strand incision within the nucleotide excision repair (NER) pathway. METHODS: We used a knock-in mouse model that we generated and that endogenously expresses a fluorescent version of XPB (XPB-YFP). Using different microscopy, cellular biology and biochemistry approaches we quantified the steady state levels of this protein in different cells, and cells imbedded in tissues. RESULTS: Here we demonstrate, via confocal imaging of ex vivo tissues and cells derived from this mouse model, that TFIIH steady state levels are tightly regulated at the single cell level, thus keeping nuclear TFIIH concentrations remarkably constant in a cell type dependent manner. Moreover, we show that individual cellular TFIIH levels are proportional to the speed of mRNA production, hence to a cell's transcriptional activity, which we can correlate to proliferation status. Importantly, cancer tissue presents a higher TFIIH than normal healthy tissues. CONCLUSION: This study shows that TFIIH cellular concentration can be used as a bona-fide quantitative marker of transcriptional activity and cellular proliferation.

6.
Mol Cell ; 38(5): 637-48, 2010 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-20541997

RESUMEN

Transcription-coupled nucleotide excision repair (TC-NER) allows RNA polymerase II (RNAPII)-blocking lesions to be rapidly removed from the transcribed strand of active genes. Defective TCR in humans is associated with Cockayne syndrome (CS), typically caused by defects in either CSA or CSB. Here, we show that CSB contains a ubiquitin-binding domain (UBD). Cells expressing UBD-less CSB (CSB(del)) have phenotypes similar to those of cells lacking CSB, but these can be suppressed by appending a heterologous UBD, so ubiquitin binding is essential for CSB function. Surprisingly, CSB(del) remains capable of assembling nucleotide excision repair factors and repair synthesis proteins around damage-stalled RNAPII, but such repair complexes fail to excise the lesion. Together, our results indicate an essential role for protein ubiquitylation and CSB's UBD in triggering damage incision during TC-NER and allow us to integrate the function of CSA and CSB in a model for the process.


Asunto(s)
ADN Helicasas , Enzimas Reparadoras del ADN , Reparación del ADN , Ubiquitina/metabolismo , Secuencia de Aminoácidos , Línea Celular/efectos de la radiación , Núcleo Celular/metabolismo , Síndrome de Cockayne/genética , Síndrome de Cockayne/metabolismo , Daño del ADN , ADN Helicasas/genética , ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Humanos , Datos de Secuencia Molecular , Mutación , Proteínas de Unión a Poli-ADP-Ribosa , Regiones Promotoras Genéticas , Estructura Terciaria de Proteína , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Tetrahidrofolato Deshidrogenasa/genética , Ubiquitina/genética , Rayos Ultravioleta
7.
Nucleic Acids Res ; 44(11): 5246-55, 2016 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-27060134

RESUMEN

Cockayne syndrome B (CSB), best known for its role in transcription-coupled nucleotide excision repair (TC-NER), contains a ubiquitin-binding domain (UBD), but the functional connection between protein ubiquitylation and this UBD remains unclear. Here, we show that CSB is regulated via site-specific ubiquitylation. Mass spectrometry analysis of CSB identified lysine (K) 991 as a ubiquitylation site. Intriguingly, mutation of this residue (K991R) does not affect CSB's catalytic activity or protein stability, but greatly affects genome stability, even in the absence of induced DNA damage. Moreover, cells expressing CSB K991R are sensitive to oxidative DNA damage, but proficient for TC-NER. K991 becomes ubiquitylated upon oxidative DNA damage, and while CSB K991R is recruited normally to such damage, it fails to dissociate in a timely manner, suggesting a requirement for K991 ubiquitylation in CSB activation. Interestingly, deletion of CSB's UBD gives rise to oxidative damage sensitivity as well, while CSB ΔUBD and CSB K991R affects expression of overlapping groups of genes, further indicating a functional connection. Together, these results shed new light on the regulation of CSB, with K991R representing an important separation-of-function-mutation in this multi-functional protein.


Asunto(s)
Síndrome de Cockayne/genética , Síndrome de Cockayne/metabolismo , Daño del ADN , Reparación del ADN , Estrés Oxidativo , Transcripción Genética , Secuencia de Aminoácidos , Ciclo Celular , Línea Celular , Supervivencia Celular , Análisis por Conglomerados , Daño del ADN/efectos de la radiación , Expresión Génica , Perfilación de la Expresión Génica , Inestabilidad Genómica , Humanos , Mutación , Proteínas Recombinantes de Fusión , Ubiquitinación
8.
EMBO J ; 31(17): 3550-63, 2012 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-22863773

RESUMEN

Nucleotide excision repair (NER) is a precisely coordinated process essential to avoid DNA damage-induced cellular malfunction and mutagenesis. Here, we investigate the mechanistic details and effects of the NER machinery when it is compromised by a pathologically significant mutation in a subunit of the repair/transcription factor TFIIH, namely XPD. In contrast to previous studies, we find that no single- or double-strand DNA breaks are produced at early time points after UV irradiation of cells bearing a specific XPD mutation, despite the presence of a clear histone H2AX phosphorylation (γH2AX) signal in the UV-exposed areas. We show that the observed γH2AX signal can be explained by the presence of longer single-strand gaps possibly generated by strand displacement. Our in vivo measurements also indicate a strongly reduced TFIIH-XPG binding that could promote single-strand displacement at the site of UV lesions. This finding not only highlights the crucial role of XPG's interactions with TFIIH for proper NER, but also sheds new light on how a faulty DNA repair process can induce extreme genomic instability in human patients.


Asunto(s)
Reparación del ADN , ADN de Cadena Simple/genética , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética , Proteína de la Xerodermia Pigmentosa del Grupo D/genética , Animales , Línea Celular , Daño del ADN , Humanos , Ratones , Ratones Transgénicos , Mutación , Rayos Ultravioleta
9.
PLoS Genet ; 9(7): e1003611, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23861670

RESUMEN

UV-induced DNA damage causes repression of RNA synthesis. Following the removal of DNA lesions, transcription recovery operates through a process that is not understood yet. Here we show that knocking-out of the histone methyltransferase DOT1L in mouse embryonic fibroblasts (MEF(DOT1L)) leads to a UV hypersensitivity coupled to a deficient recovery of transcription initiation after UV irradiation. However, DOT1L is not implicated in the removal of the UV-induced DNA damage by the nucleotide excision repair pathway. Using FRAP and ChIP experiments we established that DOT1L promotes the formation of the pre-initiation complex on the promoters of UV-repressed genes and the appearance of transcriptionally active chromatin marks. Treatment with Trichostatin A, relaxing chromatin, recovers both transcription initiation and UV-survival. Our data suggest that DOT1L secures an open chromatin structure in order to reactivate RNA Pol II transcription initiation after a genotoxic attack.


Asunto(s)
Cromatina/genética , Daño del ADN/genética , Metiltransferasas/genética , Animales , Cromatina/efectos de la radiación , Reparación del ADN/genética , Regulación de la Expresión Génica/efectos de los fármacos , N-Metiltransferasa de Histona-Lisina , Ácidos Hidroxámicos/farmacología , Hipersensibilidad , Ratones , Ratones Noqueados , ARN Polimerasa II/metabolismo , Activación Transcripcional , Rayos Ultravioleta
10.
PLoS Genet ; 9(4): e1003431, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23637614

RESUMEN

The ten-subunit transcription factor IIH (TFIIH) plays a crucial role in transcription and nucleotide excision repair (NER). Inactivating mutations in the smallest 8-kDa TFB5/TTDA subunit cause the neurodevelopmental progeroid repair syndrome trichothiodystrophy A (TTD-A). Previous studies have shown that TTDA is the only TFIIH subunit that appears not to be essential for NER, transcription, or viability. We studied the consequences of TTDA inactivation by generating a Ttda knock-out (Ttda(-/-) ) mouse-model resembling TTD-A patients. Unexpectedly, Ttda(-/-) mice were embryonic lethal. However, in contrast to full disruption of all other TFIIH subunits, viability of Ttda(-/-) cells was not affected. Surprisingly, Ttda(-/-) cells were completely NER deficient, contrary to the incomplete NER deficiency of TTD-A patient-derived cells. We further showed that TTD-A patient mutations only partially inactivate TTDA function, explaining the relatively mild repair phenotype of TTD-A cells. Moreover, Ttda(-/-) cells were also highly sensitive to oxidizing agents. These findings reveal an essential role of TTDA for life, nucleotide excision repair, and oxidative DNA damage repair and identify Ttda(-/-) cells as a unique class of TFIIH mutants.


Asunto(s)
Reparación del ADN , Síndromes de Tricotiodistrofia , Animales , Síndrome de Cockayne , Humanos , Mutación , Factor de Transcripción TFIIH/genética , Factores de Transcripción/genética , Transcripción Genética , Síndromes de Tricotiodistrofia/genética
11.
Proc Natl Acad Sci U S A ; 110(44): 17927-32, 2013 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-24127601

RESUMEN

DNA lesions that block transcription may cause cell death even when repaired, if transcription does not restart to reestablish cellular metabolism. However, transcription resumption after individual DNA-lesion repair remains poorly described in mechanistic terms and its players are largely unknown. The general transcription factor II H (TFIIH) is a major actor of both nucleotide excision repair subpathways of which transcription-coupled repair highlights the interplay between DNA repair and transcription. Using an unbiased proteomic approach, we have identified the protein eleven-nineteen lysine-rich leukemia (ELL) as a TFIIH partner. Here we show that ELL is recruited to UV-damaged chromatin in a Cdk7- dependent manner (a component of the cyclin-dependent activating kinase subcomplex of TFIIH). We demonstrate that depletion of ELL strongly hinders RNA polymerase II (RNA Pol II) transcription resumption after lesion removal and DNA gap filling. Lack of ELL was also observed to increase RNA Pol II retention to the chromatin during this process. Identifying ELL as an essential player for RNA Pol II restart during cellular DNA damage response opens the way to obtaining a mechanistic description of transcription resumption after DNA repair.


Asunto(s)
Reparación del ADN/fisiología , ARN Polimerasa II/metabolismo , Factor de Transcripción TFIIH/metabolismo , Activación Transcripcional/fisiología , Factores de Elongación Transcripcional/metabolismo , Secuencia de Bases , Western Blotting , Línea Celular , Inmunoprecipitación de Cromatina , Clonación Molecular , Cartilla de ADN/genética , Recuperación de Fluorescencia tras Fotoblanqueo , Humanos , Espectrometría de Masas , Datos de Secuencia Molecular , Interferencia de ARN , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ADN
12.
Hum Mol Genet ; 22(14): 2881-93, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23562818

RESUMEN

The basal transcription/repair factor II H (TFIIH), found mutated in cancer-prone or premature aging diseases, plays a still unclear role in RNA polymerase I transcription. Furthermore, the impact of this function on TFIIH-related diseases, such as trichothiodystrophy (TTD), remains to be explored. Here, we studied the involvement of TFIIH during the whole process of ribosome biogenesis, from RNAP1 transcription to maturation steps of the ribosomal RNAs. Our results show that TFIIH is recruited to the ribosomal DNA in an active transcription-dependent manner and functions in RNAP1 transcription elongation through ATP hydrolysis of the XPB subunit. Remarkably, we found a TFIIH allele-specific effect, affecting RNAP1 transcription and/or the pre-rRNA maturation process. Interestingly, this effect was observed in mutant TFIIH-TTD cells and also in the brains of TFIIH-TTD mice. Our findings provide evidence that defective ribosome synthesis represents a new faulty mechanism involved in the pathophysiology of TFIIH-related diseases.


Asunto(s)
Mutación , ARN Ribosómico/genética , Factor de Transcripción TFIIH/genética , Síndromes de Tricotiodistrofia/genética , Animales , Humanos , Ratones , Ratones Noqueados , ARN Polimerasa I/genética , ARN Polimerasa I/metabolismo , Procesamiento Postranscripcional del ARN , ARN Ribosómico/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Factor de Transcripción TFIIH/metabolismo , Transcripción Genética , Síndromes de Tricotiodistrofia/metabolismo
13.
J Cell Sci ; 126(Pt 15): 3278-83, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23729738

RESUMEN

Trichothiodystrophy group A (TTD-A) patients carry a mutation in the transcription factor II H (TFIIH) subunit TTDA. Using a novel in vivo tripartite split-GFP system, we show that TTDA interacts with the TFIIH subunit p52 and the p52-TTDA-GFP product is incorporated into TFIIH. p52-TTDA-GFP is able to bind DNA and is recruited to UV-damaged DNA. Furthermore, we show that two patient-mutated TTDA proteins can interact with p52, are able to bind to the DNA and can localize to damaged DNA. Our findings give new insights into the behavior of TTDA within the context of a living cell and thereby shed light on the complex phenotype of TTD-A patients.


Asunto(s)
Factor de Transcripción TFIIH/metabolismo , Factores de Transcripción/metabolismo , Síndromes de Tricotiodistrofia/genética , Síndromes de Tricotiodistrofia/metabolismo , Línea Celular , ADN/metabolismo , Daño del ADN , Fibroblastos , Humanos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Dominios y Motivos de Interacción de Proteínas , Subunidades de Proteína , Proteínas Adaptadoras de la Señalización Shc/genética , Proteínas Adaptadoras de la Señalización Shc/metabolismo , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src , Factor de Transcripción TFIIH/genética , Factores de Transcripción/genética , Transfección
14.
Nucleic Acids Res ; 40(18): 9044-59, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22810208

RESUMEN

The structure specific flap endonuclease 1 (FEN1) plays an essential role in long-patch base excision repair (BER) and in DNA replication. We have generated a fluorescently tagged FEN1 expressing mouse which allows monitoring the localization and kinetics of FEN1 in response to DNA damage in living cells and tissues. The expression of FEN1, which is tagged at its C-terminal end with enhanced yellow fluorescent protein (FEN1-YFP), is under control of the endogenous Fen1 transcriptional regulatory elements. In line with its role in processing of Okazaki fragments during DNA replication, we found that FEN1-YFP expression is mainly observed in highly proliferating tissue. Moreover, the FEN1-YFP fusion protein allowed us to investigate repair kinetics in cells challenged with local and global DNA damage. In vivo multi-photon fluorescence microscopy demonstrates rapid localization of FEN1 to local laser-induced DNA damage sites in nuclei, providing evidence of a highly mobile protein that accumulates fast at DNA lesion sites with high turnover rate. Inhibition of poly (ADP-ribose) polymerase 1 (PARP1) disrupts FEN1 accumulation at sites of DNA damage, indicating that PARP1 is required for FEN1 recruitment to DNA repair intermediates in BER.


Asunto(s)
Reparación del ADN , Endonucleasas de ADN Solapado/metabolismo , Animales , Proteínas Bacterianas/genética , Encéfalo/metabolismo , Células Cultivadas , Daño del ADN , Endonucleasas de ADN Solapado/análisis , Endonucleasas de ADN Solapado/genética , Técnicas de Sustitución del Gen , Cinética , Proteínas Luminiscentes/genética , Ratones , Poli(ADP-Ribosa) Polimerasa-1 , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Antígeno Nuclear de Célula en Proliferación/análisis , Fase S
15.
Life Sci Alliance ; 7(2)2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37993260

RESUMEN

DNA integrity is incessantly confronted to agents inducing DNA lesions. All organisms are equipped with a network of DNA damage response mechanisms that will repair DNA lesions and restore proper cellular activities. Despite DNA repair mechanisms have been revealed in replicating cells, still little is known about how DNA lesions are repaired in postmitotic cells. Muscle fibers are highly specialized postmitotic cells organized in syncytia and they are vulnerable to age-related degeneration and atrophy after radiotherapy treatment. We have studied the DNA repair capacity of muscle fiber nuclei and compared it with the one measured in proliferative myoblasts here. We focused on the DNA repair mechanisms that correct ionizing radiation (IR)-induced lesions, namely the base excision repair, the nonhomologous end joining, and the homologous recombination (HR). We found that in the most differentiated myogenic cells, myotubes, these DNA repair mechanisms present weakened kinetics of recruitment of DNA repair proteins to IR-damaged DNA. For base excision repair and HR, this decline can be linked to reduced steady-state levels of key proteins involved in these processes.


Asunto(s)
Daño del ADN , Reparación del ADN , Daño del ADN/genética , Reparación del ADN por Unión de Extremidades , Diferenciación Celular/genética , ADN/metabolismo
16.
EMBO J ; 28(8): 1111-20, 2009 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-19279666

RESUMEN

Nucleotide excision repair (NER) requires the coordinated sequential assembly and actions of the involved proteins at sites of DNA damage. Following damage recognition, dual incision 5' to the lesion by ERCC1-XPF and 3' to the lesion by XPG leads to the removal of a lesion-containing oligonucleotide of about 30 nucleotides. The resulting single-stranded DNA (ssDNA) gap on the undamaged strand is filled in by DNA repair synthesis. Here, we have asked how dual incision and repair synthesis are coordinated in human cells to avoid the exposure of potentially harmful ssDNA intermediates. Using catalytically inactive mutants of ERCC1-XPF and XPG, we show that the 5' incision by ERCC1-XPF precedes the 3' incision by XPG and that the initiation of repair synthesis does not require the catalytic activity of XPG. We propose that a defined order of dual incision and repair synthesis exists in human cells in the form of a 'cut-patch-cut-patch' mechanism. This mechanism may aid the smooth progression through the NER pathway and contribute to genome integrity.


Asunto(s)
Daño del ADN , Reparación del ADN , ADN/metabolismo , Animales , Dominio Catalítico , Línea Celular , ADN/genética , ADN/efectos de la radiación , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endonucleasas/genética , Endonucleasas/metabolismo , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Rayos Ultravioleta
17.
Nat Genet ; 36(7): 714-9, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15220921

RESUMEN

DNA repair-deficient trichothiodystrophy (TTD) results from mutations in the XPD and XPB subunits of the DNA repair and transcription factor TFIIH. In a third form of DNA repair-deficient TTD, called group A, none of the nine subunits encoding TFIIH carried mutations; instead, the steady-state level of the entire complex was severely reduced. A new, tenth TFIIH subunit (TFB5) was recently identified in yeast. Here, we describe the identification of the human TFB5 ortholog and its association with human TFIIH. Microinjection of cDNA encoding TFB5 (GTF2H5, also called TTDA) corrected the DNA-repair defect of TTD-A cells, and we identified three functional inactivating mutations in this gene in three unrelated families with TTD-A. The GTF2H5 gene product has a role in regulating the level of TFIIH. The identification of a new evolutionarily conserved subunit of TFIIH implicated in TTD-A provides insight into TFIIH function in transcription, DNA repair and human disease.


Asunto(s)
Reparación del ADN , Factores de Transcripción TFII/fisiología , Transcripción Genética , Electroforesis en Gel de Poliacrilamida , Células HeLa , Humanos , Microinyecciones , Sistemas de Lectura Abierta , Factor de Transcripción TFIIH , Factores de Transcripción TFII/química , Factores de Transcripción TFII/genética
18.
Nat Commun ; 14(1): 341, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36670096

RESUMEN

The transcriptional response to genotoxic stress involves gene expression arrest, followed by recovery of mRNA synthesis (RRS) after DNA repair. We find that the lack of the EXD2 nuclease impairs RRS and decreases cell survival after UV irradiation, without affecting DNA repair. Overexpression of wild-type, but not nuclease-dead EXD2, restores RRS and cell survival. We observe that UV irradiation triggers the relocation of EXD2 from mitochondria to the nucleus. There, EXD2 is recruited to chromatin where it transiently interacts with RNA Polymerase II (RNAPII) to promote the degradation of nascent mRNAs synthesized at the time of genotoxic attack. Reconstitution of the EXD2-RNAPII partnership on a transcribed DNA template in vitro shows that EXD2 primarily interacts with an elongation-blocked RNAPII and efficiently digests mRNA. Overall, our data highlight a crucial step in the transcriptional response to genotoxic attack in which EXD2 interacts with elongation-stalled RNAPII on chromatin to potentially degrade the associated nascent mRNA, allowing transcription restart after DNA repair.


Asunto(s)
Daño del ADN , Reparación del ADN , Cromatina/genética , Transcripción Genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , ARN Mensajero/genética
19.
Nat Commun ; 14(1): 7384, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37968267

RESUMEN

Spinal muscular atrophy is an autosomal recessive neuromuscular disease caused by mutations in the multifunctional protein Survival of Motor Neuron, or SMN. Within the nucleus, SMN localizes to Cajal bodies, which are associated with nucleoli, nuclear organelles dedicated to the first steps of ribosome biogenesis. The highly organized structure of the nucleolus can be dynamically altered by genotoxic agents. RNAP1, Fibrillarin, and nucleolar DNA are exported to the periphery of the nucleolus after genotoxic stress and, once DNA repair is fully completed, the organization of the nucleolus is restored. We find that SMN is required for the restoration of the nucleolar structure after genotoxic stress. During DNA repair, SMN shuttles from the Cajal bodies to the nucleolus. This shuttling is important for nucleolar homeostasis and relies on the presence of Coilin and the activity of PRMT1.


Asunto(s)
Atrofia Muscular Espinal , Proteínas de Unión al ARN , Humanos , Proteínas de Unión al ARN/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Nucléolo Celular/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Neuronas Motoras/metabolismo , Proteínas del Complejo SMN/metabolismo , Cuerpos Enrollados/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas Represoras/metabolismo
20.
PLoS Biol ; 7(10): e1000220, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19841728

RESUMEN

Studies based on cell-free systems and on in vitro-cultured living cells support the concept that many cellular processes, such as transcription initiation, are highly dynamic: individual proteins stochastically bind to their substrates and disassemble after reaction completion. This dynamic nature allows quick adaptation of transcription to changing conditions. However, it is unknown to what extent this dynamic transcription organization holds for postmitotic cells embedded in mammalian tissue. To allow analysis of transcription initiation dynamics directly into living mammalian tissues, we created a knock-in mouse model expressing fluorescently tagged TFIIH. Surprisingly and in contrast to what has been observed in cultured and proliferating cells, postmitotic murine cells embedded in their tissue exhibit a strong and long-lasting transcription-dependent immobilization of TFIIH. This immobilization is both differentiation driven and development dependent. Furthermore, although very statically bound, TFIIH can be remobilized to respond to new transcriptional needs. This divergent spatiotemporal transcriptional organization in different cells of the soma revisits the generally accepted highly dynamic concept of the kinetic framework of transcription and shows how basic processes, such as transcription, can be organized in a fundamentally different fashion in intact organisms as previously deduced from in vitro studies.


Asunto(s)
Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , Factor de Transcripción TFIIH/metabolismo , Transcripción Genética , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Células Cultivadas , Cerebelo/citología , Cerebelo/metabolismo , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Inmunoprecipitación de Cromatina , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Fibroblastos/citología , Recuperación de Fluorescencia tras Fotoblanqueo , Cinética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Endogámicos C57BL , Técnicas de Cultivo de Órganos , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factor de Transcripción TFIIH/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA