Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nucleic Acids Res ; 50(D1): D1515-D1521, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34986598

RESUMEN

The Evidence and Conclusion Ontology (ECO) is a community resource that provides an ontology of terms used to capture the type of evidence that supports biomedical annotations and assertions. Consistent capture of evidence information with ECO allows tracking of annotation provenance, establishment of quality control measures, and evidence-based data mining. ECO is in use by dozens of data repositories and resources with both specific and general areas of focus. ECO is continually being expanded and enhanced in response to user requests as well as our aim to adhere to community best-practices for ontology development. The ECO support team engages in multiple collaborations with other ontologies and annotating groups. Here we report on recent updates to the ECO ontology itself as well as associated resources that are available through this project. ECO project products are freely available for download from the project website (https://evidenceontology.org/) and GitHub (https://github.com/evidenceontology/evidenceontology). ECO is released into the public domain under a CC0 1.0 Universal license.


Asunto(s)
Biología Computacional/normas , Bases de Datos Genéticas , Ontología de Genes , Programas Informáticos , Humanos , Anotación de Secuencia Molecular
3.
Nature ; 550(7674): 61-66, 2017 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-28953883

RESUMEN

The characterization of baseline microbial and functional diversity in the human microbiome has enabled studies of microbiome-related disease, diversity, biogeography, and molecular function. The National Institutes of Health Human Microbiome Project has provided one of the broadest such characterizations so far. Here we introduce a second wave of data from the study, comprising 1,631 new metagenomes (2,355 total) targeting diverse body sites with multiple time points in 265 individuals. We applied updated profiling and assembly methods to provide new characterizations of microbiome personalization. Strain identification revealed subspecies clades specific to body sites; it also quantified species with phylogenetic diversity under-represented in isolate genomes. Body-wide functional profiling classified pathways into universal, human-enriched, and body site-enriched subsets. Finally, temporal analysis decomposed microbial variation into rapidly variable, moderately variable, and stable subsets. This study furthers our knowledge of baseline human microbial diversity and enables an understanding of personalized microbiome function and dynamics.


Asunto(s)
Microbiota/fisiología , Filogenia , Conjuntos de Datos como Asunto , Humanos , Metagenoma/genética , Metagenoma/fisiología , Microbiota/genética , Anotación de Secuencia Molecular , National Institutes of Health (U.S.) , Especificidad de Órganos , Análisis Espacio-Temporal , Factores de Tiempo , Estados Unidos
4.
BMC Microbiol ; 14: 294, 2014 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-25433798

RESUMEN

BACKGROUND: Phenotypic data are routinely used to elucidate gene function in organisms amenable to genetic manipulation. However, previous to this work, there was no generalizable system in place for the structured storage and retrieval of phenotypic information for bacteria. RESULTS: The Ontology of Microbial Phenotypes (OMP) has been created to standardize the capture of such phenotypic information from microbes. OMP has been built on the foundations of the Basic Formal Ontology and the Phenotype and Trait Ontology. Terms have logical definitions that can facilitate computational searching of phenotypes and their associated genes. OMP can be accessed via a wiki page as well as downloaded from SourceForge. Initial annotations with OMP are being made for Escherichia coli using a wiki-based annotation capture system. New OMP terms are being concurrently developed as annotation proceeds. CONCLUSIONS: We anticipate that diverse groups studying microbial genetics and associated phenotypes will employ OMP for standardizing microbial phenotype annotation, much as the Gene Ontology has standardized gene product annotation. The resulting OMP resource and associated annotations will facilitate prediction of phenotypes for unknown genes and result in new experimental characterization of phenotypes and functions.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Biología Computacional/métodos , Programas Informáticos , Fenotipo
5.
Database (Oxford) ; 20212021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-34244718

RESUMEN

The Ontology for Biomedical Investigations (OBI) underwent a focused review of assay term annotations, logic and hierarchy with a goal to improve and standardize these terms. As a result, inconsistencies in W3C Web Ontology Language (OWL) expressions were identified and corrected, and additionally, standardized design patterns and a formalized template to maintain them were developed. We describe here this informative and productive process to describe the specific benefits and obstacles for OBI and the universal lessons for similar projects.


Asunto(s)
Ontologías Biológicas , Lenguaje , Estándares de Referencia
6.
Microorganisms ; 8(3)2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-32106460

RESUMEN

Despite significant interest and past work to elucidate the phylogeny and photochemistry of species of the Heliobacteriaceae, genomic analyses of heliobacteria to date have been limited to just one published genome, that of the thermophilic species Heliobacterium (Hbt.) modesticaldum str. Ice1T. Here we present an analysis of the complete genome of a second heliobacterium, Heliorestis (Hrs.) convoluta str. HHT, an alkaliphilic, mesophilic, and morphologically distinct heliobacterium isolated from an Egyptian soda lake. The genome of Hrs. convoluta is a single circular chromosome of 3.22 Mb with a GC content of 43.1% and 3263 protein-encoding genes. In addition to culture-based observations and insights gleaned from the Hbt. modesticaldum genome, an analysis of enzyme-encoding genes from key metabolic pathways supports an obligately photoheterotrophic lifestyle for Hrs. convoluta. A complete set of genes encoding enzymes for propionate and butyrate catabolism and the absence of a gene encoding lactate dehydrogenase distinguishes the carbon metabolism of Hrs. convoluta from its close relatives. Comparative analyses of key proteins in Hrs. convoluta, including cytochrome c553 and the Fo alpha subunit of ATP synthase, with those of related species reveal variations in specific amino acid residues that likely contribute to the success of Hrs. convoluta in its highly alkaline environment.

7.
J Biomed Semantics ; 10(1): 13, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31307550

RESUMEN

BACKGROUND: Microbial genetics has formed a foundation for understanding many aspects of biology. Systematic annotation that supports computational data mining should reveal further insights for microbes, microbiomes, and conserved functions beyond microbes. The Ontology of Microbial Phenotypes (OMP) was created to support such annotation. RESULTS: We define standards for an OMP-based annotation framework that supports the capture of a variety of phenotypes and provides flexibility for different levels of detail based on a combination of pre- and post-composition using OMP and other Open Biomedical Ontology (OBO) projects. A system for entering and viewing OMP annotations has been added to our online, public, web-based data portal. CONCLUSIONS: The annotation framework described here is ready to support projects to capture phenotypes from the experimental literature for a variety of microbes. Defining the OMP annotation standard should support the development of new software tools for data mining and analysis in comparative phenomics.


Asunto(s)
Ontologías Biológicas , Curaduría de Datos/métodos , Microbiología , Fenotipo , Metadatos
8.
Genes (Basel) ; 9(2)2018 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-29364862

RESUMEN

Rhizobium leguminosarum bv. viciae is a soil α-proteobacterium that establishes a diazotrophic symbiosis with different legumes of the Fabeae tribe. The number of genome sequences from rhizobial strains available in public databases is constantly increasing, although complete, fully annotated genome structures from rhizobial genomes are scarce. In this work, we report and analyse the complete genome of R. leguminosarum bv. viciae UPM791. Whole genome sequencing can provide new insights into the genetic features contributing to symbiotically relevant processes such as bacterial adaptation to the rhizosphere, mechanisms for efficient competition with other bacteria, and the ability to establish a complex signalling dialogue with legumes, to enter the root without triggering plant defenses, and, ultimately, to fix nitrogen within the host. Comparison of the complete genome sequences of two strains of R. leguminosarum bv. viciae, 3841 and UPM791, highlights the existence of different symbiotic plasmids and a common core chromosome. Specific genomic traits, such as plasmid content or a distinctive regulation, define differential physiological capabilities of these endosymbionts. Among them, strain UPM791 presents unique adaptations for recycling the hydrogen generated in the nitrogen fixation process.

9.
Trends Microbiol ; 17(7): 262-8, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19577473

RESUMEN

The ever-increasing number of microbial sequencing projects necessitates a standardized system for the capture of genomic data to ensure that the flood of information produced can be effectively utilized. The Gene Ontology (GO) provides the standard for gene product annotations in the areas of molecular function, biological process and cellular component. A recent effort by the Plant-Associated Microbe Gene Ontology (PAMGO) Consortium has produced more than 800 new GO terms specific for annotating interactions between microbes and their hosts and other symbiotic interactions. In addition, there have been changes and additions to the GO annotation format and evidence storage system to reflect the needs of the microbial annotation community. The capture of annotation information with systems like the GO is absolutely essential to enable the efficient mining of annotation information across diverse genomes and thus to further biological research in meaningful ways.


Asunto(s)
Proteínas Algáceas/genética , Proteínas Arqueales/genética , Proteínas Bacterianas/genética , Biología Computacional/métodos , Biología Computacional/normas , Proteínas Fúngicas/genética , Proteínas Protozoarias/genética , Proteínas Algáceas/fisiología , Proteínas Arqueales/fisiología , Proteínas Bacterianas/fisiología , Proteínas Fúngicas/fisiología , Proteínas Protozoarias/fisiología , Vocabulario Controlado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA