RESUMEN
High time resolution is required to reliably measure neuronal activity in the gustatory cortex in response to taste stimuli. Hedonic aspects of gustatory processing have never been explored using gustatory evoked potentials (GEPs), a high-time-resolution technique. Our aim was to study cerebral processing of hedonic taste in humans using GEPs in response to sucrose solutions in subjects with different ratings of pleasantness regarding sucrose. In this exploratory study, 30 healthy volunteers were randomly stimulated with 3 sucrose solutions. The sucrose stimulus was presented to the tongue for 1s 20 times. GEPs were recorded from 9 cortical sites with EEG sensors at Cz, Fz, Pz, C3, C4, F3, F4, Fp1, and Fp2 (10/20 system). The main result was that subjects who preferred the high-concentration (20g/100mL) sucrose solution had higher GEP amplitudes on the Pz, Cz, and Fz electrodes than did subjects who preferred the low-concentration (5g/100mL) or the moderate-concentration (10g/100mL) solutions regardless of stimulus intensity. The difference in P1N1 amplitude on the Pz, Cz, and Fz electrodes according to sucrose preference of the subjects was described with stronger significance with stimulation by the 20 g-sucrose solution than by the 5 and 10g sucrose solutions. Using the reliable and safe GEP technique, we provide an original demonstration of variability of the gustatory response on the Pz, Cz, and Fz electrodes according to a sweet preference in humans. Further studies are needed to correlate the electric signal recorded by surface electrodes to the neural generator.
Asunto(s)
Corteza Cerebral , Preferencias Alimentarias/fisiología , Sacarosa/química , Percepción del Gusto/fisiología , Adulto , Femenino , Humanos , Masculino , Soluciones , Adulto JovenRESUMEN
Alterations of cholesterol metabolism have been described for many neurodegenerative pathologies, such as Alzheimer's disease in the brain and age-related macular degeneration in the retina. Recent evidence suggests that glaucoma, which is characterized by the progressive death of retinal ganglion cells, could also be associated with disruption of cholesterol homeostasis. In the present study we characterized cholesterol metabolism in a rat model of laser-induced intraocular hypertension, the main risk factor for glaucoma. Sterol levels were measured using gas-chromatography and cholesterol-related gene expression using quantitative RT-PCR at various time-points. As early as 18 hours after the laser procedure, genes implicated in cholesterol biosynthesis and uptake were upregulated (+49% and +100% for HMG-CoA reductase and LDLR genes respectively, vs. naive eyes) while genes involved in efflux were downregulated (-26% and -37% for ApoE and CYP27A1 genes, respectively). Cholesterol and precursor levels were consecutively elevated 3 days post-laser (+14%, +40% and +194% for cholesterol, desmosterol and lathosterol, respectively). Interestingly, counter-regulatory mechanisms were transcriptionally activated following these initial dysregulations, which were associated with the restoration of retinal cholesterol homeostasis, favorable to ganglion cell viability, one month after the laser-induced ocular hypertension. In conclusion, we report here for the first time that ocular hypertension is associated with transient major dynamic changes in retinal cholesterol metabolism.
Asunto(s)
Glaucoma , Hipertensión Ocular , Animales , Colesterol/metabolismo , Modelos Animales de Enfermedad , Glaucoma/metabolismo , Hipertensión Ocular/metabolismo , Ratas , Retina/patología , Células Ganglionares de la Retina/patologíaRESUMEN
Liver physiology is circadian and sensitive to feeding and insulin. Food intake regulates insulin secretion and is a dominant signal for the liver clock. However, how much insulin contributes to the effect of feeding on the liver clock and rhythmic gene expression remains to be investigated. Insulin action partly depends on changes in insulin receptor (IR)-dependent gene expression. Here, we use hepatocyte-restricted gene deletion of IR to evaluate its role in the regulation and oscillation of gene expression as well as in the programming of the circadian clock in the adult mouse liver. We find that, in the absence of IR, the rhythmicity of core-clock gene expression is altered in response to day-restricted feeding. This change in core-clock gene expression is associated with defective reprogramming of liver gene expression. Our data show that an intact hepatocyte insulin receptor is required to program the liver clock and associated rhythmic gene expression.
Asunto(s)
Factores de Transcripción ARNTL , Relojes Circadianos , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Animales , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Relojes Circadianos/genética , Ritmo Circadiano/genética , Expresión Génica , Regulación de la Expresión Génica , Hepatocitos/metabolismo , Insulina/metabolismo , Hígado/metabolismo , Ratones , Receptor de Insulina/genética , Receptor de Insulina/metabolismoRESUMEN
Aims: Although prebiotics, probiotics, and fecal transplantation can alter the sensation of hunger and/or feeding behavior, the role of the constitutive gut microbiota in the short-term regulation of food intake during normal physiology is still unclear. Results: An antibiotic-induced microbiota depletion study was designed to compare feeding behavior in conventional and microbiota-depleted mice. Tissues were sampled to characterize the time profile of microbiota-derived signals in mice during consumption of either standard or high-fat food for 1 h. Pharmacological and genetic tools were used to evaluate the contribution of postprandial endotoxemia and inflammatory responses in the short-term regulation of food intake. We observed constitutive microbial and macronutrient-dependent control of food intake at the time scale of a meal; that is, within 1 h of food introduction. Specifically, microbiota depletion increased food intake, and the microbiota-derived anorectic effect became significant during the consumption of high-fat but not standard food. This anorectic effect correlated with a specific postprandial microbial metabolic signature, and did not require postprandial endotoxemia or an NOD-, LRR-, and Pyrin domain-containing protein 3-inflammasome-mediated inflammatory response. Innovation and Conclusion: These findings show that the gut microbiota controls host appetite at the time scale of a meal under normal physiology. Interestingly, a microbiota-derived anorectic effect develops specifically with a high-fat meal, indicating that gut microbiota activity is involved in the satietogenic properties of foods. Antioxid. Redox Signal. 37, 349-369.
Asunto(s)
Depresores del Apetito , Endotoxemia , Microbiota , Animales , Ingestión de Alimentos , Péptido 1 Similar al Glucagón , Inflamación , Ratones , Ratones Endogámicos NOD , Estrés OxidativoRESUMEN
The evolution of powered flight in insects had major consequences for global biodiversity and involved the acquisition of adaptive processes allowing individuals to disperse to new ecological niches. Flies use both vision and olfactory input from their antennae to guide their flight; chemosensors on fly wings have been described, but their function remains mysterious. We studied Drosophila flight in a wind tunnel. By genetically manipulating wing chemosensors, we show that these structures play an essential role in flight performance with a sex-specific effect. Pheromonal systems are also involved in Drosophila flight guidance: transgenic expression of the pheromone production and detection gene, desat1, produced low, rapid flight that was absent in control flies. Our study suggests that the sex-specific modulation of free-flight odor tracking depends on gene expression in various fly tissues including wings and pheromonal-related tissues.
Asunto(s)
Vuelo Animal , Atractivos Sexuales/fisiología , Caracteres Sexuales , Olfato , Alas de Animales/fisiología , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Drosophila melanogaster , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/fisiología , Femenino , Regulación de la Expresión Génica , Masculino , Odorantes , Feromonas/administración & dosificación , Órganos de los Sentidos , Atractivos Sexuales/genéticaRESUMEN
Organisms are surrounded throughout life by chemically complex odors. How individuals process an odorant within a mixture or a mixture as a whole is a key question in neuroethology and chemical senses. This question is addressed here by using newborn rabbits, which can be rapidly conditioned to a new stimulus by single association with the mammary pheromone. After conditioning to ethyl maltol (odorant B), pups behaviorally respond to B and an A'B' mixture (68/32 ratio) but not to ethyl isobutyrate (odorant A) or an AB mixture (30/70 ratio). This suggests elemental and configural perception of A'B' and AB, respectively. We then explored the neural substrates underlying the processing of these mixtures with the hypothesis that processing varies according to perception. Pups were pseudoconditioned or conditioned to B on postnatal day 3 before exposure to B, A'B' or AB on day 4. Fos expression was not similar between groups (mainly in the olfactory bulb and posterior piriform cortex) suggesting a differential processing of the stimuli that might reflect either stimulus complexity or conditioning effect. Thus, the ratio of components in A'B' vs AB leads to differential activation of the olfactory system which may contribute to elemental and configural percepts of these mixtures. In addition, together with recent behavioral data, this highlights that configural perception occurs even in relatively immature animals, emphasizing the value of the newborn rabbit for exploration of odor mixture processing from molecules to brain and behavior.
Asunto(s)
Encéfalo/fisiología , Odorantes , Bulbo Olfatorio/fisiología , Percepción Olfatoria/fisiología , Animales , Encéfalo/metabolismo , Condicionamiento Psicológico , Femenino , Masculino , Bulbo Olfatorio/metabolismo , Feromonas/administración & dosificación , Proteínas Proto-Oncogénicas c-fos/metabolismo , ConejosRESUMEN
BACKGROUND AND AIM: To accurately quantify the cost of physical activity and to evaluate the different components of energy expenditure in humans, it is necessary to evaluate external mechanical work (WEXT). Large platform systems surpass other currently used techniques. Here, we describe a calculation method for force-platforms to calculate long-term WEXT. METHODS: Each force-platform (2.46×1.60m and 3.80×2.48m) rests on 4 piezoelectric sensors. During long periods of recording, a drift in the speed of displacement of the center of mass (necessary to calculate WEXT) is generated. To suppress this drift, wavelet decomposition is used to low-pass filter the source signal. By using wavelet decomposition coefficients, the source signal can be recovered. To check the validity of WEXT calculations after signal processing, an oscillating pendulum system was first used; then, 10 healthy subjects performed a standardized exercise (squatting exercise). A medical application is also reported in eight Parkinsonian patients during the timed "get-up and go" test and compared with the same test in ten healthy subjects. RESULTS: Values of WEXT with the oscillating pendulum showed that the system was accurate and reliable. During the squatting exercise, the average measured WEXT was 0.4% lower than theoretical work. WEXT and mechanical work efficiency during the "get-up and go" test in Parkinson's disease patients in comparison with that of healthy subjects were very coherent. CONCLUSIONS: This method has numerous applications for studying physical activity and mechanical work efficiency in physiological and pathological conditions.
Asunto(s)
Metabolismo Energético/fisiología , Modelos Biológicos , Enfermedad de Parkinson/fisiopatología , Adulto , Fenómenos Biomecánicos/fisiología , Estudios de Casos y Controles , Prueba de Esfuerzo , Humanos , MasculinoRESUMEN
Previous functional Magnetic Resonance Imaging studies evaluated the role of satiety on cortical taste area activity and highlighted decreased activation in the orbito-frontal cortex when food was eaten until satiation. The modulation of orbito-frontal neurons (secondary taste area) by ad libitum food intake has been associated with the pleasantness of the food's flavor. The insula and frontal operculum (primary taste area) are also involved in reward processing. The aim was to compare human gustatory evoked potentials (GEP) recorded in the primary and secondary gustatory cortices in a fasted state with those after food intake. Fifteen healthy volunteers were enrolled in this observational study. In each of two sessions, two GEP recordings were performed (at 11:00 am and 1:30 pm) in response to sucrose gustatory stimulation, and a sucrose-gustatory threshold was determined. During one session, a standard lunch was provided between the two GEP recordings. During the other session, subjects had nothing to eat. Hunger sensation, wanting, liking, and the perception of the solution's intensity were evaluated with visual analog scales. GEP latencies measured in the Pz (p < 0.001), Cz (p < 0.01), Fz (p < 0.001) recordings (primary taste area) were longer after lunch than in the pre-prandial condition. Fp1 and Fp2 latencies (secondary taste area) tended to be longer after lunch, but the difference was not significant. No difference was observed for the sucrose-gustatory threshold regardless of the session and time. Modifications in the primary taste area activity during the post-prandial period occurred regardless of the nature of the food eaten and could represent the activity of the frontal operculum and insula, which was recently shown to be modulated by gut signals (GLP-1, CCK, ghrelin, or insulin) through vagal afferent neurons or metabolic changes of the internal milieu after nutrient absorption. This trial was registered at clinicalstrials.gov as NCT02472444.