Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Analyst ; 148(20): 5012-5021, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37672009

RESUMEN

A molecular imprinted polymer (MIP) fabricated from a chitosan doped with graphite to create a conductive composite (CG-MIC) with the ability to trap and detect dimethyl methylphosphonate (DMMP) through a change in resistance of the material has been successfully manufactured. The GC-MIC presented a maximum trapping capacity of 96 ppm (0.096 mg g-1) of DMMP. A similar non-imprinted composite made of chitosan-graphite (CG-NIC) had a surface adsorption of 48 ppm (0.048 mg g-1) of DMMP. The manufacturing process was tested for consistency and there were no significant differences in resistance between batches of CG-MIC before (around 450 Ω) and after (around 70 Ω) DMMP extraction, representing a homogeneous manufacturing process. Although Atomic Force Microscopy studies revealed that the graphite was not homogenously distributed throughout the chitosan matrix, the response was consistent. The changes in the concentration of DMMP within the self-sensing material, being proportional to those in gas concentration, could be followed by the changes in resistance. The inclusion of common interferents: Acetic acid, acetone, ethanol, ammonium hydroxide and 2-propanol, equivalent in concentration to the DMMP, caused a change in the resistance of the material but did not substantially affect the specific resistance response of the composite material. Based on this data, the CG-MIC could be used as a smart material with sensing capabilities to monitor trapping levels of DMMP.

2.
J Am Chem Soc ; 140(24): 7420-7424, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29860839

RESUMEN

Paramagnetic endohedral fullerenes with long spin coherence times, such as N@C60 and Y@C82, are being explored as potential spin quantum bits (qubits). Their use for quantum information processing requires a way to hold them in fixed spatial arrangements. Here we report the synthesis of a porphyrin-based two-site receptor 1, offering a rigid structure that binds spin-active fullerenes (Y@C82) at a center-to-center distance of 5.0 nm, predicted from molecular simulations. The spin-spin dipolar coupling was measured with the pulsed EPR spectroscopy technique of double electron electron resonance and analyzed to give a distance of 4.87 nm with a small distribution of distances.

3.
J Org Chem ; 82(14): 7446-7462, 2017 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-28654266

RESUMEN

Strapped or "basket-handle" porphyrins have been investigated previously as hemoglobin mimics and catalysts. The facial selectivity of their interactions with axial ligands is a sensitive test for noncovalent bonding. Here the binding of pyridyl ligands to zinc porphyrins with thioester-linked alkyl straps is investigated in solution by NMR spectroscopy and UV-vis titration, and in the solid state by X-ray crystallography. We expected that coordination of the axial ligand would occur on the less hindered face of the porphyrin, away from the strap. Surprisingly, attractive interactions between the strap and the ligand direct axial coordination to the strapped face of the porphyrin, except when the strap is short and tight. The strapped porphyrins were incorporated into π-conjugated cyclic porphyrin hexamers using template-directed synthesis. The strap and the sulfur substituents are located either inside or outside the porphyrin nanoring, depending on the length of the strap. Six-porphyrin nanorings with outwardly pointing sulfur anchors were prepared for exploring quantum interference effects in single-molecule charge transport.

4.
J Am Chem Soc ; 138(40): 13159-13162, 2016 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-27667319

RESUMEN

We report the stereoselective synthesis of a left-handed trefoil knot from a tris(2,6-pyridinedicarboxamide) oligomer with six chiral centers using a lanthanide(III) ion template. The oligomer folds around the lanthanide ion to form an overhand knot complex of single handedness. Subsequent joining of the overhand knot end groups by ring-closing olefin metathesis affords a single enantiomer of the trefoil knot in 90% yield. The knot topology and handedness were confirmed by NMR spectroscopy, mass spectrometry, and X-ray crystallography. The pseudo-D3-symmetric knot was employed as an asymmetric catalyst in Mukaiyama aldol reactions, generating enantioselectivities of up to 83:17 er, which are significantly higher than those obtained with a comparable unknotted ligand complex.

5.
J Am Chem Soc ; 137(31): 9812-5, 2015 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-26148842

RESUMEN

A molecular pentafoil knot and doubly and triply entwined [2]catenanes based on circular Fe(II) double helicate scaffolds bind halide anions in their central cavities through electrostatic and CH···X(-) hydrogen-bonding interactions. The binding is up to (3.6 ± 0.2) × 10(10) M(-1) in acetonitrile (for pentafoil knot [2·Cl](PF6)9), making these topologically complex host molecules some of the strongest synthetic noncovalent binders of halide anions measured to date, comparable in chloride ion affinity to silver salts.

6.
J Am Chem Soc ; 137(32): 10437-42, 2015 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-26214819

RESUMEN

We report on the assembly of 2,6-pyridinedicarboxamide ligands (1) with point chirality about lanthanide metal ion (Ln(3+)) templates, in which the helical chirality of the resulting entwined 3:1 ligand:metal complexes is covalently captured by ring-closing olefin metathesis to form topologically chiral molecular trefoil knots of single handedness. The ligands do not self-sort (racemic ligands form a near-statistical mixture of homoleptic and heteroleptic lanthanide complexes), but the use of only (R,R)-1 leads solely to a trefoil knot of Λ-handedness, whereas (S,S)-1 forms the Δ-trefoil knot with complete stereoselectivity. The knots and their isomeric unknot macrocycles were characterized by NMR spectroscopy, mass spectrometry, and X-ray crystallography and the expression of the chirality that results from the topology of the knots studied by circular dichroism.


Asunto(s)
Elementos de la Serie de los Lantanoides/química , Conformación Molecular , Alquenos/química , Técnicas de Química Sintética , Dicroismo Circular , Cristalografía por Rayos X , Ligandos , Espectroscopía de Resonancia Magnética , Espectrofotometría Ultravioleta
7.
Angew Chem Int Ed Engl ; 54(21): 6110-50, 2015 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-25951013

RESUMEN

Half a century after Schill and Lüttringhaus carried out the first directed synthesis of a [2]catenane, a plethora of strategies now exist for the construction of molecular Hopf links (singly interlocked rings), the simplest type of catenane. The precision and effectiveness with which suitable templates and/or noncovalent interactions can arrange building blocks has also enabled the synthesis of intricate and often beautiful higher order interlocked systems, including Solomon links, Borromean rings, and a Star of David catenane. This Review outlines the diverse strategies that exist for synthesizing catenanes in the 21st century and examines their emerging applications and the challenges that still exist for the synthesis of more complex topologies.

8.
Angew Chem Int Ed Engl ; 54(18): 5355-9, 2015 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-25683453

RESUMEN

Small alterations to the structure of a star-shaped template totally change its mode of operation. The hexapyridyl template directs the conversion of a porphyrin dimer to the cyclic hexamer, but deleting one pyridine site changes the product to the cyclic decamer, while deleting two binding sites changes the product to the cyclic octamer. This surprising switch in selectivity is explained by the formation of 2:1 caterpillar track complexes, in which two template wheels bind inside the nanoring. Caterpillar track complexes can also be prepared by binding the hexapyridyl template inside the 8- and 10-porphyrin nanorings. NMR exchange spectroscopy (EXSY) experiments show that these complexes exhibit correlated motion, in which the conrotatory rotation of the two template wheels is coupled to rotation of the nanoring track. In the case of the 10-porphyrin system, the correlated motion can be locked by binding palladium(II) dichloride between the two templates.

9.
J Am Chem Soc ; 136(8): 3208-18, 2014 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-24494711

RESUMEN

Herein, we report our latest experimental investigations of halide-π interactions in solution. We base this research on the thermodynamic characterization of a series of 1:1 complexes formed between halides (Cl(-), Br(-), and I(-)) and several α,α-isomers of "two-wall" calix[4]pyrrole receptors bearing two six-membered aromatic rings in opposed meso positions. The installed aromatic systems feature a broad range of electron density as indicated by the calculated values for their electrostatic surface potentials at the center of the rings. We show that a correlation exists between the electronic nature of the aromatic walls and the thermodynamic stability of the X(-)⊂receptor complexes. We give evidence for the existence of both repulsive and attractive interactions between π systems and halide anions in solution (between 1 and -1 kcal/mol). We dissect the measured free energies of binding for chloride and bromide with the receptor series into their enthalpic and entropic thermodynamic quantities. In acetonitrile solution, the binding enthalpy values remain almost constant throughout the receptor series, and the differences in free energies are provoked exclusively by changes in the entropic term of the binding processes. Most likely, this unexpected behavior is owed to strong solvation effects that make up important components of the measured magnitudes for the enthalpies and entropies of binding. The use of chloroform, a much less polar solvent, limits the impact of solvation effects revealing the expected existence of a parallel trend between free energies and enthalpies of binding. This result indicates that halide-π interactions in organic solvents are mainly driven by enthalpy. However, the typical paradigm of enthalpy-entropy compensation is still not observed in this less polar solvent.

10.
J Am Chem Soc ; 136(38): 13142-5, 2014 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-25198065

RESUMEN

We report on a complex featuring three 2,6-pyridinedicarboxamide ligands entwined around a lanthanide (Ln(3+)) ion. The ligand strands can be cyclized by ring-closing olefin metathesis to form a molecular trefoil knot in 58% yield. Demetalation with tetraethylammonium fluoride quantitatively generates the wholly organic 81-atom-loop trefoil knot.


Asunto(s)
Alquenos/química , Amidas/química , Elementos de la Serie de los Lantanoides/química , Piridinas/química , Cationes/química , Ciclización , Ligandos
11.
J Am Chem Soc ; 134(31): 13121-32, 2012 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-22809359

RESUMEN

We describe the design, synthesis and conformational assignment of three diasteromeric bis-phosphonate cavitands based on an aryl extended calix[4]pyrrole tetrol scaffold. The diastereoisomers differ in the relative spatial orientation of the P═O groups installed at their upper rims. We demonstrate that these compounds act as heteroditopic receptors for ion pairs forming ion-paired 1:1 complexes with alkylammonium (quaternary and primary) chloride salts in dichloromethane (DCM) solution and in the solid-state. (1)H NMR titrations indicate that the complexes are highly stable thermodynamically and kinetically. In the case of tetraalkyl-phosphonium/ammonium chloride guests, the host featuring the two P═O groups directed outwardly with respect to the aromatic cavity, 4oo, produces the most thermodynamically stable complexes. Conversely, for the primary alkyl ammonium chloride, the most effective receptor is the diastereoisomer 4ii with the two P═O groups converging on top of the aromatic cavity. In the nonpolar DCM solvent, the size of the quaternary cation has a strong impact in the thermodynamic stability of the complexes and their binding geometry. We use 2D-ROESY experiments to map out the binding geometries of the 1:1 complexes formed in solution. The 1:1 complexes of the 4oo host with the chloride salts have a separated arrangement of the bound ion-pair. In contrast, those of the 4ii host display a close-contact arrangement. We also investigate the same complexation processes in acetonitrile (ACN) solution. Both the salt and the initially formed anionic complex are fully dissociated in this more polar solvent. The receptors show an analogous trend in their binding affinities for quaternary phosphonium/ammonium chloride salts to the one seen in DCM solution. However, in ACN solution, the magnitudes of the binding affinities are reduced significantly and the size of the cation does not play a role. In addition, the inversion in the trend of relative binding affinities of the complexes, which was revealed in DCM solution, is eradicated in ACN when changing the cation substitution from quaternary to primary.

12.
Proc Natl Acad Sci U S A ; 106(26): 10455-9, 2009 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-19261848

RESUMEN

Calix[4]pyrroles having extended aromatic cavities have been functionalized with 4 ureas in the para position of their meso phenyl substituents. This elaboration of the upper rim was completed in 2 synthetic steps starting from the alpha,alpha,alpha,alpha-tetranitro isomer of the calix[4]pyrrole obtained in the acid catalyzed condensation of p-nitrophenyl methyl ketone and pyrrole. In dichloromethane solution and in the presence of 4,4'-bipyridine N-N'-dioxide the tetraurea calix[4]pyrrole dimerizes reversibly forming a cyclic array of 16 hydrogen bonds and encapsulating 1 molecule of bis-N-oxide. The encapsulated guest is bound in the cavity by hydrogen bonding to the 2 endohedral calix[4]pyrrole centers. Further evidence for dimerization of the tetraurea calix[4]pyrroles is provided by (1)H-NMR experiments and by the formation of mixed capsules.


Asunto(s)
Calixarenos/química , Porfirinas/química , Urea/química , Dimerización , Enlace de Hidrógeno , Cetonas/química , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Óxidos/química , Pirroles/química , Termodinámica , Difracción de Rayos X
13.
Materials (Basel) ; 15(19)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36233940

RESUMEN

The electropolymerization of metallo-octaethylporphyrins (OEP) containing copper, zinc or nickel metal were performed using cyclic voltammetry at three different potential ranges. The electropolymerized porphyrins were characterized by UV-Vis and Raman spectroscopies and the Soret band (393-445 nm) and Raman bands were used to assess the degree of electropolymerization obtained. The application for an analytical use of the modified electrodes to determine phenobarbital in aqueous solution was evaluated. The electropolymerized CuOEP produced at potentials ranging from 0.0 to 2.2 V was the best performer with a limit of detection (LoD) of 10 mg L-1 (43.07 µM), a linear range of 10-150 mg L-1 (43.07 to 646 µM), an average precision of 4.3% (%RSD) and an average % recovery of 101.34%. These results indicate that the CuOEP-modified electrode is suitable for the analysis of phenobarbital in human samples, as the concentration range varies from 10 to 40 mg L-1 (43.07 to 172.27 µM), typically found in antiepileptic treatments, to those at the toxic level (172-258 µM) or lethal levels (345-650 µM).

14.
Biosensors (Basel) ; 11(6)2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34200646

RESUMEN

Coumaphos is an organophosphorus compound used as insecticide and frequently used by beekeepers for the management of parasitic mites. The most important metabolite, chlorferron (CFN), has been identified in biological samples and foodstuff. The need to quickly identify the presence of typical metabolites, as an indication of interaction with coumaphos has driven the need to produce a highly sensitive electrochemical method for chlorferron analysis, based on molecularly imprinting polymers (MIP) technology. It showed irreversible behaviour with mixed diffusion/adsorption-controlled reactions at the electrode surface. A monoelectronic mechanism of reaction for oxidation has also been suggested. The linear range observed was from 0.158 to 75 µM. Median precision in terms of %RSD around 3% was also observed. For DPV, the limit of detection (LOD) and the limit of quantitation (LOQ) for the CFN-MIP were 0.158 µM and 0.48 µM, respectively. The obtained median % recovery was around 98%. The results were also validated to reference values obtained using GC-MS. Urine and human synthetic plasma spiked with CFN were used to demonstrate the usability of the method in biological samples, showing the potential for biomonitoring. The developed imprinted sensor showed maximum signal change less than 16.8% when related metabolites or pesticide were added to the mix, suggesting high selectivity of the MIP sensor toward CFN molecules. The results from in vitro metabolism of CMP analysed also demonstrates the potential for detection and quantification of CFN in environmental samples. The newly developed CFN-MIP sensor offers similar LoDs than chromatographic methods with shorter analysis time.


Asunto(s)
Monitoreo Biológico/métodos , Polímeros Impresos Molecularmente , Umbeliferonas/análisis , Adsorción , Técnicas Electroquímicas , Electrodos , Humanos , Límite de Detección , Impresión Molecular , Polímeros , Umbeliferonas/química
15.
J Am Chem Soc ; 132(8): 2520-1, 2010 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-20131778

RESUMEN

Trimethylamine N-oxide and trimethylphosphine oxide guests are pairwise encapsulated in a dimeric capsule self-assembled from a tetraurea aryl extended calix[4]pyrrole. The capsule possesses polar functional groups in its interior capable of controlling the orientation of the included guests. A modest selectivity is observed during the encapsulation process that is beyond the controls of size or shape exclusion.

16.
J Am Chem Soc ; 131(9): 3178-9, 2009 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-19216565

RESUMEN

The incorporation of four carboxylic acids or four amino groups to the upper rim of an aryl extended calix[4]pyrrole produces water-soluble receptors which are able to effectively bind aromatic N-oxides in water by a combination of hydrogen bonding, pi-pi, CH-pi, and hydrophobic interactions.


Asunto(s)
Calixarenos/química , Porfirinas/química , Piridinas/química , Agua/química , Cristalografía por Rayos X , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Estructura Molecular
17.
Angew Chem Weinheim Bergstr Ger ; 127(18): 5445-5449, 2015 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-27546919

RESUMEN

Small alterations to the structure of a star-shaped template totally change its mode of operation. The hexapyridyl template directs the conversion of a porphyrin dimer to the cyclic hexamer, but deleting one pyridine site changes the product to the cyclic decamer, while deleting two binding sites changes the product to the cyclic octamer. This surprising switch in selectivity is explained by the formation of 2:1 caterpillar track complexes, in which two template wheels bind inside the nanoring. Caterpillar track complexes can also be prepared by binding the hexapyridyl template inside the 8- and 10-porphyrin nanorings. NMR exchange spectroscopy (EXSY) experiments show that these complexes exhibit correlated motion, in which the conrotatory rotation of the two template wheels is coupled to rotation of the nanoring track. In the case of the 10-porphyrin system, the correlated motion can be locked by binding palladium(II) dichloride between the two templates.

18.
J Phys Chem C Nanomater Interfaces ; 119(11): 6414-6420, 2015 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-25960822

RESUMEN

Conjugated polymers with cyclic structures are interesting because their symmetry leads to unique electronic properties. Recent advances in Vernier templating now allow large shape-persistent fully conjugated porphyrin nanorings to be synthesized, exhibiting unique electronic properties. We examine the impact of different conformations on exciton delocalization and emission depolarization in a range of different porphyrin nanoring topologies with comparable spatial extent. Low photoluminescence anisotropy values are found to occur within the first few hundred femtoseconds after pulsed excitation, suggesting ultrafast delocalization of excitons across the nanoring structures. Molecular dynamics simulations show that further polarization memory loss is caused by out-of-plane distortions associated with twisting and bending of the templated nanoring topologies.

20.
Org Lett ; 15(19): 4976-9, 2013 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-24050205

RESUMEN

Thermally and in nonprotic media N,N-dimethyl-2-propyn-1-amine N-oxide undergoes two consecutive sigmatropic rearrangements affording propenal. Two molecular containers capable of the quantitative inclusion/encapsulation of the N-oxide are described. The N-oxide becomes kinetically stabilized when included in the containers. The relationship between the observed kinetic stabilization of the N-oxide and the thermodynamic and kinetic stability of its inclusion complexes is explained and modeled.


Asunto(s)
Alquinos/química , Óxidos/química , Pargilina/análogos & derivados , Cinética , Modelos Moleculares , Pargilina/química , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA