Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 120(22): 223601, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29906180

RESUMEN

We report on a systematic study of nanomechanical dissipation in high-frequency (≈300 MHz) gallium arsenide optomechanical disk resonators, in conditions where clamping and fluidic losses are negligible. Phonon-phonon interactions are shown to contribute with a loss background fading away at cryogenic temperatures (3 K). Atomic layer deposition of alumina at the surface modifies the quality factor of resonators, pointing towards the importance of surface dissipation. The temperature evolution is accurately fitted by two-level systems models, showing that nanomechanical dissipation in gallium arsenide resonators directly connects to their microscopic properties. Two-level systems, notably at surfaces, appear to rule the damping and fluctuations of such high-quality crystalline nanomechanical devices, at all temperatures from 3 to 300 K.

2.
Phys Rev Lett ; 118(6): 063605, 2017 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-28234503

RESUMEN

Collective phenomena emerging from nonlinear interactions between multiple oscillators, such as synchronization and frequency locking, find applications in a wide variety of fields. Optomechanical resonators, which are intrinsically nonlinear, combine the scientific assets of mechanical devices with the possibility of long distance controlled interactions enabled by traveling light. Here we demonstrate light-mediated frequency locking of three distant nano-optomechanical oscillators positioned in a cascaded configuration. The oscillators, integrated on a chip along a common coupling waveguide, are optically driven with a single laser and oscillate at gigahertz frequency. Despite an initial mechanical frequency disorder of hundreds of kilohertz, the guided light locks them all with a clear transition in the optical output. The experimental results are described by Langevin equations, paving the way to scalable cascaded optomechanical configurations.

3.
Nanotechnology ; 24(9): 095303, 2013 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-23403917

RESUMEN

We report a method to pattern horizontal vapor-liquid-solid growth of Si nanowires at vertical sidewalls of Si microstructures. The method allows one to produce either single nanowire structures or well-ordered nanowire arrays with predefined growth positions, thus enabling a practical development of nanomechanical devices that exploit the singular properties of Si nanowires. In particular, we demonstrate the fabrication of doubly clamped nanowire resonators and resonator arrays whose mechanical resonances can be measured by optical or electrical readout. We also show that the fabrication method enables the electrical readout of the resonant mode splitting of nanowire resonators in the VHF range, which allows the application of such an effect for enhanced nanomechanical sensing with nanowire resonators.

4.
Nat Commun ; 7: 13452, 2016 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-27834379

RESUMEN

The identification of species is a fundamental problem in analytical chemistry and biology. Mass spectrometers identify species by their molecular mass with extremely high sensitivity (<10-24 g). However, its application is usually limited to light analytes (<10-19 g). Here we demonstrate that by using nanomechanical resonators, heavier analytes can be identified by their mass and stiffness. The method is demonstrated with spherical gold nanoparticles and whole intact E. coli bacteria delivered by electrospray ionization to microcantilever resonators placed in low vacuum at 0.1 torr. We develop a theoretical procedure for obtaining the mass, position and stiffness of the analytes arriving the resonator from the adsorption-induced eigenfrequency jumps. These results demonstrate the enormous potential of this technology for identification of large biological complexes near their native conformation, a goal that is beyond the capabilities of conventional mass spectrometers.


Asunto(s)
Escherichia coli/citología , Oro/química , Mecanotransducción Celular/fisiología , Nanopartículas del Metal/química , Nanotecnología/instrumentación , Análisis Espectral/métodos , Microscopía de Fuerza Atómica
5.
Nat Nanotechnol ; 10(9): 810-6, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26237347

RESUMEN

Nano- and micromechanical resonators are the subject of research that aims to develop ultrasensitive mass sensors for spectrometry, chemical analysis and biomedical diagnosis. Unfortunately, their merits generally diminish in liquids because of an increased dissipation. The development of faster and lighter miniaturized devices would enable improved performances, provided the dissipation was controlled and novel techniques were available to drive and readout their minute displacement. Here we report a nano-optomechanical approach to this problem using miniature semiconductor disks. These devices combine a mechanical motion at high frequencies (gigahertz and above) with an ultralow mass (picograms) and a moderate dissipation in liquids. We show that high-sensitivity optical measurements allow their Brownian vibrations to be resolved directly, even in the most-dissipative liquids. We investigate their interaction with liquids of arbitrary properties, and analyse measurements in light of new models. Nano-optomechanical disks emerge as probes of rheological information of unprecedented sensitivity and speed, which opens up applications in sensing and fundamental science.


Asunto(s)
Modelos Teóricos , Nanotecnología/métodos , Reología/métodos , Vibración , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA