Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Comput Aided Mol Des ; 38(1): 17, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570405

RESUMEN

The development of peptides for therapeutic targets or biomarkers for disease diagnosis is a challenging task in protein engineering. Current approaches are tedious, often time-consuming and require complex laboratory data due to the vast search spaces that need to be considered. In silico methods can accelerate research and substantially reduce costs. Evolutionary algorithms are a promising approach for exploring large search spaces and can facilitate the discovery of new peptides. This study presents the development and use of a new variant of the genetic-programming-based POET algorithm, called POET Regex , where individuals are represented by a list of regular expressions. This algorithm was trained on a small curated dataset and employed to generate new peptides improving the sensitivity of peptides in magnetic resonance imaging with chemical exchange saturation transfer (CEST). The resulting model achieves a performance gain of 20% over the initial POET models and is able to predict a candidate peptide with a 58% performance increase compared to the gold-standard peptide. By combining the power of genetic programming with the flexibility of regular expressions, new peptide targets were identified that improve the sensitivity of detection by CEST. This approach provides a promising research direction for the efficient identification of peptides with therapeutic or diagnostic potential.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética , Humanos , Fantasmas de Imagen , Imagen por Resonancia Magnética/métodos , Péptidos
2.
NMR Biomed ; 36(6): e4712, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-35150021

RESUMEN

At the beginning of the millennium, the first chemical exchange saturation transfer (CEST) contrast agents were bio-organic molecules. However, later, metal-based CEST agents (paraCEST agents) took center stage. This did not last too long as paraCEST agents showed limited translational potential. By contrast, the CEST field gradually became dominated by metal-free CEST agents. One branch of research stemming from the original work by van Zijl and colleagues is the development of CEST agents based on polypeptides. Indeed, in the last 2 decades, tremendous progress has been achieved in this field. This includes the design of novel peptides as biosensors, genetically encoded recombinant as well as synthetic reporters. This was a result of extensive characterization and elucidation of the theoretical requirements for rational designing and engineering of such agents. Here, we provide an extensive overview of the evolution of more precise protein-based CEST agents, review the rationalization of enzyme-substrate pairs as CEST contrast enhancers, discuss the theoretical considerations to improve peptide selectivity, specificity and enhance CEST contrast. Moreover, we discuss the strong influence of synthetic biology on the development of the next generation of protein-based CEST contrast agents.


Asunto(s)
Medios de Contraste , Imagen por Resonancia Magnética , Imagen por Resonancia Magnética/métodos , Medios de Contraste/química , Biología Sintética , Péptidos , Interpretación de Imagen Asistida por Computador/métodos
3.
NMR Biomed ; 36(11): e5007, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37469121

RESUMEN

Chemical exchange saturation transfer (CEST) MRI has been identified as a novel alternative to classical diagnostic imaging. Over the last several decades, many studies have been conducted to determine possible CEST agents, such as endogenously expressed compounds or proteins, that can be utilized to produce contrast with minimally invasive procedures and reduced or non-existent levels of toxicity. In recent years there has been an increased interest in the generation of genetically engineered CEST contrast agents, typically based on existing proteins with CEST contrast or modified to produce CEST contrast. We have developed an in silico method for the evolution of peptide sequences to optimize CEST contrast and showed that these peptides could be combined to create de novo biosensors for CEST MRI. A single protein, superCESTide, was designed to be 198 amino acids. SuperCESTide was expressed in E. coli and purified with size exclusion chromatography. The magnetic transfer ratio asymmetry generated by superCESTide was comparable to levels seen in previous CEST reporters, such as protamine sulfate (salmon protamine) and human protamine. These data show that novel peptides with sequences optimized in silico for CEST contrast that utilize a more comprehensive range of amino acids can still produce contrast when assembled into protein units expressed in complex living environments.


Asunto(s)
Técnicas Biosensibles , Escherichia coli , Humanos , Imagen por Resonancia Magnética/métodos , Péptidos , Protaminas , Aminoácidos , Medios de Contraste/química
4.
Magn Reson Med ; 79(2): 1010-1019, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28480589

RESUMEN

PURPOSE: Genetically encoded reporters can assist in visualizing biological processes in live organisms and have been proposed for longitudinal and noninvasive tracking of therapeutic cells in deep tissue. Cells can be labeled in situ or ex vivo and followed in live subjects over time. Nevertheless, a major challenge for reporter systems is to identify the cell population that actually expresses an active reporter. METHODS: We have used a nucleoside analog, pyrrolo-2'-deoxycytidine, as an imaging probe for the putative reporter gene, Drosophila melanogaster 2'-deoxynucleoside kinase. Bioengineered cells were imaged in vivo in animal models of brain tumor and immunotherapy using chemical exchange saturation transfer MRI. The number of transduced cells was quantified by flow cytometry based on the optical properties of the probe. RESULTS: We performed a comparative analysis of six different cell lines and demonstrate utility in a mouse model of immunotherapy. The proposed technology can be used to quantify the number of labeled cells in a given region, and moreover is sensitive enough to detect less than 10,000 cells. CONCLUSION: This unique technology that enables efficient selection of labeled cells followed by in vivo monitoring with both optical and MRI. Magn Reson Med 79:1010-1019, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Rastreo Celular/métodos , Células Dendríticas/química , Genes Reporteros/genética , Ingeniería Genética/métodos , Inmunoterapia/métodos , Imagen por Resonancia Magnética/métodos , Animales , Investigación Biomédica/métodos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/terapia , Células Dendríticas/citología , Células Dendríticas/metabolismo , Desoxicitidina/análogos & derivados , Desoxicitidina/análisis , Desoxicitidina/química , Desoxicitidina/metabolismo , Drosophila melanogaster/enzimología , Drosophila melanogaster/genética , Citometría de Flujo , Genes de Insecto/genética , Células HEK293 , Humanos , Neoplasias Experimentales/diagnóstico por imagen , Neoplasias Experimentales/terapia , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Pirroles/análisis , Pirroles/química , Pirroles/metabolismo
5.
Mol Pharm ; 13(9): 3043-53, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27398883

RESUMEN

Brain tumors are among the most lethal types of tumors. Therapeutic response variability and failure in patients have been attributed to several factors, including inadequate drug delivery to tumors due to the blood-brain barrier (BBB). Consequently, drug delivery strategies are being developed for the local and targeted delivery of drugs to brain tumors. These drug delivery strategies could benefit from new approaches to monitor the delivery of drugs to tumors. Here, we evaluated the feasibility of imaging 4-[bis(2-chloroethyl)amino]-l-phenylalanine (melphalan), a clinically used DNA alkylating agent, using chemical exchange saturation transfer magnetic resonance imaging (CEST MRI), for theranostic applications. We evaluated the physicochemical parameters that affect melphalan's CEST contrast and demonstrated the feasibility of imaging the unmodified drug by saturating its exchangeable amine protons. Melphalan generated a CEST signal despite its reactivity in an aqueous milieu. The maximum CEST signal was observed at pH 6.2. This CEST contrast trend was then used to monitor therapeutic responses to melphalan in vitro. Upon cell death, the decrease in cellular pH from ∼7.4 to ∼6.4 caused an amplification of the melphalan CEST signal. This is contrary to what has been reported for other CEST contrast agents used for imaging cell death, where a decrease in the cellular pH following cell death results in a decrease in the CEST signal. Ultimately, this method could be used to noninvasively monitor melphalan delivery to brain tumors and also to validate therapeutic responses to melphalan clinically.


Asunto(s)
ADN/química , Imagen por Resonancia Magnética/métodos , Melfalán/química , Alquilantes/química , Barrera Hematoencefálica/efectos de los fármacos , Línea Celular Tumoral , Medios de Contraste , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno
6.
J Am Chem Soc ; 137(1): 78-81, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25523816

RESUMEN

The local presence and concentration of metal ions in biological systems has been extensively studied ex vivo using fluorescent dyes. However, the detection of multiple metal ions in vivo remains a major challenge. We present a magnetic resonance imaging (MRI)-based method for noninvasive detection of specific ions that may be coexisting, using the tetrafluorinated derivative of the BAPTA (TF-BAPTA) chelate as a (19)F chelate analogue of existing optical dyes. Taking advantage of the difference in the ion-specific (19)F nuclear magnetic resonance (NMR) chemical shift offset (Δω) values between the ion-bound and free TF-BAPTA, we exploited the dynamic exchange between ion-bound and free TF-BAPTA to obtain MRI contrast with multi-ion chemical exchange saturation transfer (miCEST). We demonstrate that TF-BAPTA as a prototype single (19)F probe can be used to separately visualize mixed Zn(2+) and Fe(2+) ions in a specific and simultaneous fashion, without interference from potential competitive ions.


Asunto(s)
Compuestos Ferrosos/análisis , Colorantes Fluorescentes/química , Imagen por Resonancia Magnética con Fluor-19 , Zinc/análisis
7.
Radiology ; 275(3): 746-54, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25686366

RESUMEN

PURPOSE: To (a) evaluate whether the lysine-rich protein (LRP) magnetic resonance (MR) imaging reporter gene can be engineered into G47Δ, a herpes simplex-derived oncolytic virus that is currently being tested in clinical trials, without disrupting its therapeutic effectiveness and (b) establish the ability of chemical exchange saturation transfer (CEST) MR imaging to demonstrate G47Δ-LRP. MATERIALS AND METHODS: The institutional subcommittee for research animal care approved all in vivo procedures. Oncolytic herpes simplex virus G47Δ, which carried the LRP gene, was constructed and tested for its capacity to replicate in cancer cells and express LRP in vitro. The LRP gene was detected through CEST imaging of lysates derived from cells infected with G47Δ-LRP or the control G47Δ-empty virus. G47Δ-LRP was then tested for its therapeutic effectiveness and detection with CEST MR imaging in vivo. Images of rat gliomas were acquired before and 8-10 hours after injection of G47Δ-LRP (n = 7) or G47Δ-empty virus (n = 6). Group comparisons were analyzed with a paired t test. RESULTS: No significant differences were observed in viral replication or therapeutic effectiveness between G47Δ-LRP and G47Δ-empty virus. An increase in CEST image contrast was observed in cell lysates (mean ± standard deviation, 0.52% ± 0.06; P = .01) and in tumors (1.1% ± 0.3, P = .02) after infection with G47Δ-LRP but not G47Δ-empty viruses. No histopathologic differences were observed between tumors infected with G47Δ-LRP and G47Δ-empty virus. CONCLUSION: This study has demonstrated the ability of CEST MR imaging to show G47Δ-LRP at acute stages of viral infection. The introduction of the LRP transgene had no effect on the viral replication or therapeutic effectiveness. This can aid in development of the LRP gene as a reporter for the real-time detection of viral spread. Online supplemental material is available for this article.


Asunto(s)
Genes Reporteros , Lisina , Imagen por Resonancia Magnética , Viroterapia Oncolítica/métodos , Animales , Células Cultivadas , Masculino , Ratas , Ratas Endogámicas F344 , Simplexvirus
8.
Magn Reson Med ; 74(2): 544-9, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25919119

RESUMEN

PURPOSE: To develop an imaging tool that enables the detection of malignant tissue with enhanced specificity using the exquisite spatial resolution of MRI. METHODS: Two mammalian gene expression vectors were created for the expression of the lysine-rich protein (LRP) under the control of the cytomegalovirus (CMV) promoter and the progression elevated gene-3 promoter (PEG-3 promoter) for constitutive and tumor-specific expression of LRP, respectively. Using those vectors, stable cell lines of rat 9L glioma, 9L(CMV-LRP) and 9L(PEG-LRP) , were established and tested for CEST contrast in vitro and in vivo. RESULTS: 9L(PEG-LRP) cells showed increased CEST contrast compared with 9L cells in vitro. Both 9L(CMV-LRP) and 9L(PEG-LRP) cells were capable of generating tumors in the brains of mice, with a similar growth rate to tumors derived from wild-type 9L cells. An increase in CEST contrast was clearly visible in tumors derived from both 9L(CMV-LRP) and 9L(PEG-LRP) cells at 3.4 ppm. CONCLUSION: The PEG-3 promoter:LRP system can be used as a cancer-specific, molecular-genetic imaging reporter system in vivo. Because of the ubiquity of MR imaging in clinical practice, sensors of this class can be used to translate molecular-genetic imaging rapidly.


Asunto(s)
Biomarcadores de Tumor/genética , Genes Reporteros/genética , Imagen por Resonancia Magnética/métodos , Imagen Molecular/métodos , Neoplasias Experimentales/genética , Neoplasias Experimentales/patología , Animales , Femenino , Humanos , Aumento de la Imagen/métodos , Masculino , Ratones , Regiones Promotoras Genéticas/genética , Ratas , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
9.
Nat Mater ; 12(3): 268-75, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23353626

RESUMEN

Biocompatible nanomaterials and hydrogels have become an important tool for improving cell-based therapies by promoting cell survival and protecting cell transplants from immune rejection. Although their potential benefit has been widely evaluated, at present it is not possible to determine, in vivo, if and how long cells remain viable following their administration without the use of a reporter gene. Here, we report a pH-nanosensor-based magnetic resonance imaging (MRI) technique that can monitor cell death in vivo non-invasively. We demonstrate that specific MRI parameters that change on cell death of microencapsulated hepatocytes are associated with the measured bioluminescence imaging radiance. Moreover, the readout from this pH-sensitive nanosensor can be directly co-registered with high-resolution anatomical images. All of the components of these nanosensors are clinical grade and hence this approach should be a translatable and universal modification of hydrogels.


Asunto(s)
Materiales Biocompatibles , Trasplante de Células/métodos , Imagen por Resonancia Magnética/métodos , Nanoestructuras , Animales , Supervivencia Celular , Medios de Contraste/química , Hepatocitos/trasplante , Hidrogeles , Concentración de Iones de Hidrógeno , Ratones , Ratones Endogámicos BALB C
10.
NMR Biomed ; 27(3): 320-31, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24395616

RESUMEN

We present a non-invasive MRI approach for assessing the water proton resonance frequency (PRF) shifts associated with changes in temperature. This method is based on water saturation shift referencing (WASSR), a method first developed for assessing B0 field inhomogeneity. Temperature-induced water PRF shifts were determined by estimating the frequency of the minimum intensity of the water direct saturation spectrum at each temperature using Lorentzian line-shape fitting. The change in temperature was then calculated from the difference in water PRF shifts between temperatures. Optimal acquisition parameters were first estimated using simulations and later confirmed experimentally. Results in vitro and in vivo showed that the temperature changes measured using the temperature-responsive WASSR (T-WASSR) were in good agreement with those obtained with MR spectroscopy or phase-mapping-based water PRF measurement methods,. In addition, the feasibility of temperature mapping in fat-containing tissue is demonstrated in vitro. In conclusion, the T-WASSR approach provides an alternative for non-invasive temperature mapping by MRI, especially suitable for temperature measurements in fat-containing tissues.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Temperatura , Termografía/métodos , Agua/química , Animales , Simulación por Computador , Femenino , Hipertermia Inducida , Ratones , Ratones Endogámicos C57BL , Fantasmas de Imagen , Protones
11.
Proc Natl Acad Sci U S A ; 108(21): 8838-43, 2011 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-21555573

RESUMEN

Peripheral nerve injury causes sensory dysfunctions that are thought to be attributable to changes in neuronal activity occurring in somatosensory cortices both contralateral and ipsilateral to the injury. Recent studies suggest that distorted functional response observed in deprived primary somatosensory cortex (S1) may be the result of an increase in inhibitory interneuron activity and is mediated by the transcallosal pathway. The goal of this study was to develop a strategy to manipulate and control the transcallosal activity to facilitate appropriate plasticity by guiding the cortical reorganization in a rat model of sensory deprivation. Since transcallosal fibers originate mainly from excitatory pyramidal neurons somata situated in laminae III and V, the excitatory neurons in rat S1 were engineered to express halorhodopsin, a light-sensitive chloride pump that triggers neuronal hyperpolarization. Results from electrophysiology, optical imaging, and functional MRI measurements are concordant with that within the deprived S1, activity in response to intact forepaw electrical stimulation was significantly increased by concurrent illumination of halorhodopsin over the healthy S1. Optogenetic manipulations effectively decreased the adverse inhibition of deprived cortex and revealed the major contribution of the transcallosal projections, showing interhemispheric neuroplasticity and thus, setting a foundation to develop improved rehabilitation strategies to restore cortical functions.


Asunto(s)
Diagnóstico por Imagen/métodos , Plasticidad Neuronal , Traumatismos de los Nervios Periféricos , Traumatismos del Sistema Nervioso/patología , Animales , Mapeo Encefálico/métodos , Modelos Animales de Enfermedad , Halorrodopsinas/genética , Interneuronas , Ingeniería de Proteínas , Ratas , Privación Sensorial , Corteza Somatosensorial/patología , Corteza Somatosensorial/fisiopatología , Traumatismos del Sistema Nervioso/diagnóstico , Traumatismos del Sistema Nervioso/fisiopatología
12.
Biophys Rep (N Y) ; 4(3): 100158, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38848994

RESUMEN

The gene regulatory network (GRN) of biological cells governs a number of key functionalities that enable them to adapt and survive through different environmental conditions. Close observation of the GRN shows that the structure and operational principles resemble an artificial neural network (ANN), which can pave the way for the development of wet-neuromorphic computing systems. Genes are integrated into gene-perceptrons with transcription factors (TFs) as input, where the TF concentration relative to half-maximal RNA concentration and gene product copy number influences transcription and translation via weighted multiplication before undergoing a nonlinear activation function. This process yields protein concentration as the output, effectively turning the entire GRN into a gene regulatory neural network (GRNN). In this paper, we establish nonlinear classifiers for molecular machine learning using the inherent sigmoidal nonlinear behavior of gene expression. The eigenvalue-based stability analysis, tailored to system parameters, confirms maximum-stable concentration levels, minimizing concentration fluctuations and computational errors. Given the significance of the stabilization phase in GRNN computing and the dynamic nature of the GRN, alongside potential changes in system parameters, we utilize the Lyapunov stability theorem for temporal stability analysis. Based on this GRN-to-GRNN mapping and stability analysis, three classifiers are developed utilizing two generic multilayer sub-GRNNs and a sub-GRNN extracted from the Escherichia coli GRN. Our findings also reveal the adaptability of different sub-GRNNs to suit different application requirements.

13.
bioRxiv ; 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38948741

RESUMEN

Purpose: To optimize a 100 msec pulse for producing CEST MRI contrast and evaluate in mice. Methods: A gradient ascent algorithm was employed to generate a family of 100 point, 100 msec pulses for use in CEST pulse trains ('PRECISE'). Gradient ascent optimizations were performed for exchange rates (k ca ) = 500 s -1 , 1,500 s -1 , 2,500 s -1 , 3,500 s -1 and 4,500 s -1 and offsets (Δω) = 9.6, 7.8, 4.2 and 2.0 ppm. 7 PRECISE pulse shapes were tested on an 11.7 T scanner using a phantom containing three representative CEST agents with peak saturation B 1 = 4 µT. The pulse producing the most contrast in phantoms was then evaluated for CEST MRI pH mapping of the kidneys in healthy mice after iopamidol administration. Results: The most promising pulse in terms of contrast performance across all three phantoms was the 9.6 ppm, 2500 s -1 optimized pulse with ∼2.7 x improvement over Gaussian and ∼1.3x's over Fermi pulses. This pulse also displayed a large improvement in contrast over the Gaussian pulse after administration of iopamidol in live mice. Conclusion: A new 100 msec pulse was developed based on gradient ascent optimizations which produced better contrast compared to standard Gaussian and Fermi pulses in phantoms. This shape also showed a substantial improvement for CEST MRI pH mapping in live mice over the Gaussian shape and appears promising for a wide range of CEST applications.

14.
bioRxiv ; 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38617371

RESUMEN

Magnetoreceptive biology as a field remains relatively obscure; compared to the breadth of species believed to sense magnetic fields, it remains under-studied. Here, we present grounds for the expansion of magnetoreception studies among Teleosts. We begin with the electromagnetic perceptive gene (EPG) from Kryptopterus vitreolus and expand to identify 72 Teleosts with homologous proteins containing a conserved three-phenylalanine (3F) motif. Phylogenetic analysis provides insight as to how EPG may have evolved over time, and indicates that certain clades may have experienced a loss of function driven by different fitness pressures. One potential factor is water type with freshwater fish significantly more likely to possess the functional motif version (FFF), and saltwater fish to have the non-functional variant (FXF). It was also revealed that when the 3F motif from the homolog of Brachyhypopomus gauderio (B.g.) is inserted into EPG - EPG(B.g.) - the response (as indicated by increased intracellular calcium) is faster. This indicates that EPG has the potential to be engineered to improve upon its response and increase its utility to be used as a controller for specific outcomes.

15.
Front Bioeng Biotechnol ; 12: 1355915, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38605993

RESUMEN

The ability to manipulate cellular function using an external stimulus is a powerful strategy for studying complex biological phenomena. One approach to modulate the function of the cellular environment is split proteins. In this method, a biologically active protein or an enzyme is fragmented so that it reassembles only upon a specific stimulus. Although many tools are available to induce these systems, nature has provided other mechanisms to expand the split protein toolbox. Here, we show a novel method for reconstituting split proteins using magnetic stimulation. We found that the electromagnetic perceptive gene (EPG) changes conformation due to magnetic field stimulation. By fusing split fragments of a certain protein to both termini of the EPG, the fragments can be reassembled into a functional protein under magnetic stimulation due to conformational change. We show this effect with three separate split proteins: NanoLuc, APEX2, and herpes simplex virus type-1 thymidine kinase. Our results show, for the first time, that reconstitution of split proteins can be achieved only with magnetic fields. We anticipate that this study will be a starting point for future magnetically inducible split protein designs for cellular perturbation and manipulation. With this technology, we can help expand the toolbox of the split protein platform and allow better elucidation of complex biological systems.

16.
Theranostics ; 14(6): 2464-2488, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646648

RESUMEN

Cancer has remained a formidable challenge in medicine and has claimed an enormous number of lives worldwide. Theranostics, combining diagnostic methods with personalized therapeutic approaches, shows huge potential to advance the battle against cancer. This review aims to provide an overview of theranostics in oncology: exploring its history, current advances, challenges, and prospects. We present the fundamental evolution of theranostics from radiotherapeutics, cellular therapeutics, and nanotherapeutics, showcasing critical milestones in the last decade. From the early concept of targeted drug delivery to the emergence of personalized medicine, theranostics has benefited from advances in imaging technologies, molecular biology, and nanomedicine. Furthermore, we emphasize pertinent illustrations showcasing that revolutionary strategies in cancer management enhance diagnostic accuracy and provide targeted therapies customized for individual patients, thereby facilitating the implementation of personalized medicine. Finally, we describe future perspectives on current challenges, emerging topics, and advances in the field.


Asunto(s)
Neoplasias , Medicina de Precisión , Nanomedicina Teranóstica , Humanos , Neoplasias/terapia , Neoplasias/diagnóstico , Nanomedicina Teranóstica/métodos , Medicina de Precisión/métodos , Sistemas de Liberación de Medicamentos/métodos , Nanomedicina/métodos , Historia del Siglo XX , Animales , Historia del Siglo XXI
17.
J Am Chem Soc ; 135(33): 12164-7, 2013 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-23905693

RESUMEN

Although metal ions are involved in a myriad of biological processes, noninvasive detection of free metal ions in deep tissue remains a formidable challenge. We present an approach for specific sensing of the presence of Ca(2+) in which the amplification strategy of chemical exchange saturation transfer (CEST) is combined with the broad range of chemical shifts found in (19)F NMR spectroscopy to obtain magnetic resonance images of Ca(2+). We exploited the chemical shift change (Δω) of (19)F upon binding of Ca(2+) to the 5,5'-difluoro derivative of 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (5F-BAPTA) by radiofrequency labeling at the Ca(2+)-bound (19)F frequency and detection of the label transfer to the Ca(2+)-free (19)F frequency. Through the substrate binding kinetics we were able to amplify the signal of Ca(2+) onto free 5F-BAPTA and thus indirectly detect low Ca(2+) concentrations with high sensitivity.


Asunto(s)
Calcio/análisis , Imagen por Resonancia Magnética/métodos , Protones , Calcio/química , Ácido Egtácico/análogos & derivados , Ácido Egtácico/química
18.
J Am Chem Soc ; 135(4): 1617-24, 2013 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-23289583

RESUMEN

Synthetic chemistry has revolutionized the understanding of many biological systems. Small compounds that act as agonists and antagonists of proteins, and occasionally as imaging probes, have contributed tremendously to the elucidation of many biological pathways. Nevertheless, the function of thousands of proteins is still elusive, and designing new imaging probes remains a challenge. Through screening and characterization, we identified a thymidine analogue as a probe for imaging the expression of herpes simplex virus type-1 thymidine kinase (HSV1-TK). To detect the probe, we used chemical exchange saturation transfer magnetic resonance imaging (CEST-MRI), in which a dynamic exchange process between an exchangeable proton and the surrounding water protons is used to amplify the desired contrast. Initially, five pyrimidine-based molecules were recognized as putative imaging agents, since their exchangeable imino protons resonate at 5-6 ppm from the water proton frequency and their detection is therefore less affected by endogenous CEST contrast or confounded by direct water saturation. Increasing the pK(a) value of the imino proton by reduction of its 5,6-double bond results in a significant reduction of the exchange rate (k(ex)) between this proton and the water protons. This reduced k(ex) of the dihydropyrimidine nucleosides fulfills the "slow to intermediate regime" condition for generating high CEST-MRI contrast. Consequently, we identified 5-methyl-5,6-dihydrothymidine as the optimal probe and demonstrated its feasibility for in vivo imaging of HSV1-TK. In light of these findings, this new approach can be generalized for designing specific probes for the in vivo imaging of a variety of proteins and enzymes.


Asunto(s)
Regulación Enzimológica de la Expresión Génica/genética , Herpesvirus Humano 1/enzimología , Imagen por Resonancia Magnética , Sondas Moleculares/química , Timidina Quinasa/genética , Timidina/química , Timidina/análogos & derivados , Timidina Quinasa/metabolismo
19.
Magn Reson Med ; 69(2): 516-23, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22499503

RESUMEN

An MRI segmentation technique based on collecting two additional saturation transfer images is proposed as an aid for improved detection of chemical exchange saturation transfer agents. In this approach, the additional images are acquired at saturation frequencies of -12.5 and -50 ppm. Use of the ratio of these images allows differentiation of voxels with low magnetization transfer contrast (such as fat, cerebrospinal fluid, edema, or blood) from target tissue voxels using a global threshold determined by histogram analysis. We demonstrate that this technique can reduce artifacts, in vitro, in a phantom containing tubes with chemical exchange saturation transfer contrast agent embedded in either crosslinked bovine serum albumin or buffer, and in vivo for detecting diamagnetic CEST (DIACEST) liposomes injected into mice.


Asunto(s)
Algoritmos , Interpretación de Imagen Asistida por Computador/métodos , Liposomas/farmacocinética , Imagen por Resonancia Magnética/métodos , Imagen Molecular/métodos , Animales , Liposomas/análisis , Ratones , Ratones Endogámicos C57BL , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
20.
Magn Reson Med ; 70(6): 1690-8, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24123389

RESUMEN

PURPOSE: To develop a noninvasive MRI method for determining the germination and infection of tumor-homing bacteria in bacteriolytic cancer therapy using endogenous CEST contrast. METHODS: The CEST parameters of the anaerobic gram-positive bacterium Clostridium novyi-NT (C. novyi-NT) were first characterized in vitro, then used to detect C. novyi-NT germination and infection in subcutaneous CT26 colorectal tumor-bearing mice (n = 6) after injection of 300 million bacterial spores. Lipopolysacharide (LPS) injected mice were used to exclude that the changes of CEST MRI were due to inflammation. RESULTS: CEST contrast was observed over a broad frequency range for bacterial suspensions in vitro, with the maximum contrast around 2.6 ppm from the water resonance. No signal could be detected for bacterial spores, demonstrating the specificity for germination. In vivo, a significant elevation of CEST contrast was identified in C. novyi-NT infected tumors as compared to those before bacterial germination and infection (P < 0.05; n = 6). No significant change was observed in tumors with LPS-induced sterile inflammation (P > 0.05; n = 4). CONCLUSION: Endogenous bacterial CEST contrast (bacCEST) can be used to monitor the germination and proliferation of the therapeutic bacterium C. novyi-NT without a need for exogenous cell labeling probes.


Asunto(s)
Infecciones por Clostridium/patología , Clostridium/aislamiento & purificación , Clostridium/fisiología , Neoplasias Colorrectales/terapia , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Animales , Terapia Biológica/métodos , Línea Celular Tumoral , Infecciones por Clostridium/microbiología , Neoplasias Colorrectales/microbiología , Neoplasias Colorrectales/patología , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA