Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Circ Res ; 132(9): 1127-1140, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-36919600

RESUMEN

BACKGROUND: Extracellular renal interstitial guanosine cyclic 3',5'-monophosphate (cGMP) inhibits renal proximal tubule (RPT) sodium (Na+) reabsorption via Src (Src family kinase) activation. Through which target extracellular cGMP acts to induce natriuresis is unknown. We hypothesized that cGMP binds to the extracellular α1-subunit of NKA (sodium-potassium ATPase) on RPT basolateral membranes to inhibit Na+ transport similar to ouabain-a cardiotonic steroid. METHODS: Urine Na+ excretion was measured in uninephrectomized 12-week-old female Sprague-Dawley rats that received renal interstitial infusions of vehicle (5% dextrose in water), cGMP (18, 36, and 72 µg/kg per minute; 30 minutes each), or cGMP+rostafuroxin (12 ng/kg per minute) or were subjected to pressure-natriuresis±rostafuroxin infusion. Rostafuroxin is a digitoxigenin derivative that displaces ouabain from NKA. RESULTS: Renal interstitial cGMP and raised renal perfusion pressure induced natriuresis and increased phosphorylated SrcTyr416 and Erk 1/2 (extracellular signal-regulated protein kinase 1/2)Thr202/Tyr204; these responses were abolished with rostafuroxin coinfusion. To assess cGMP binding to NKA, we performed competitive binding studies with isolated rat RPTs using bodipy-ouabain (2 µM)+cGMP (10 µM) or rostafuroxin (10 µM) and 8-biotin-11-cGMP (2 µM)+ouabain (10 µM) or rostafuroxin (10 µM). cGMP or rostafuroxin reduced bodipy-ouabain fluorescence intensity, and ouabain or rostafuroxin reduced 8-biotin-11-cGMP staining. We cross-linked isolated rat RPTs with 4-N3-PET-8-biotin-11-cGMP (2 µM); 8-N3-6-biotin-10-cAMP served as negative control. Precipitation with streptavidin beads followed by immunoblot analysis showed that RPTs after cross-linking with 4-N3-PET-8-biotin-11-cGMP exhibited a significantly stronger signal for NKA than non-cross-linked samples and cross-linked or non-cross-linked 8-N3-6-biotin-10-cAMP RPTs. Ouabain (10 µM) reduced NKA in cross-linked 4-N3-PET-8-biotin-11-cGMP RPTs confirming fluorescence staining. 4-N3-PET-8-biotin-11-cGMP cross-linked samples were separated by SDS gel electrophoresis and slices corresponding to NKA molecular weight excised and processed for mass spectrometry. NKA was the second most abundant protein with 50 unique NKA peptides covering 47% of amino acids in NKA. Molecular modeling demonstrated a potential cGMP docking site in the ouabain-binding pocket of NKA. CONCLUSIONS: cGMP can bind to NKA and thereby mediate natriuresis.


Asunto(s)
GMP Cíclico , Natriuresis , ATPasa Intercambiadora de Sodio-Potasio , Animales , Femenino , Ratas , Adenosina Trifosfatasas/metabolismo , Biotina/metabolismo , GMP Cíclico/química , GMP Cíclico/metabolismo , Natriuresis/fisiología , Ouabaína/farmacología , Potasio/metabolismo , Ratas Sprague-Dawley , Sodio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/química , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
2.
Circ Res ; 130(1): 96-111, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34794320

RESUMEN

BACKGROUND: How signals from activated angiotensin type-2 receptors (AT2R) mediate inhibition of sodium ion (Na+) reabsorption in renal proximal tubule cells is currently unknown. Protein phosphatases including PP2A (protein phosphatase 2A) have been implicated in AT2R signaling in tissues other than kidney. We investigated whether inhibition of protein phosphatase PP2A reduced AT2R-mediated natriuresis and evaluated changes in PP2A activity and localization after renal AT2R activation in normal 4- and 10-week-old control Wistar-Kyoto rats and 4-week-old prehypertensive and 10-week-old hypertensive spontaneously hypertensive rats. METHODS AND RESULTS: In Wistar-Kyoto rats, direct renal interstitial administration of selective AT2R nonpeptide agonist Compound-21 (C-21) increased renal interstitial cyclic GMP (cGMP) levels, urine Na+ excretion, and simultaneously increased PP2A activity ≈2-fold in homogenates of renal cortical tubules. The cyclic GMP and natriuretic responses were abolished by concurrent renal interstitial administration of protein phosphatase inhibitor calyculin A. In renal proximal tubule cells in response to C-21, PP2A subunits A, B55α and C, but not B56γ, were recruited to apical plasma membranes together with AT2Rs. Calyculin A treatment abolished C-21-induced translocation of both AT2R and PP2A regulatory subunit B55α to apical plasma membranes. Immunoprecipitation of AT2R solubilized from renal cortical homogenates demonstrated physical association of AT2R with PP2A A, B55α, and C but not B56γ subunits. In contrast, in spontaneously hypertensive rats, administration of C-21 did not alter urine Na+ excretion or PP2A activity and failed to translocate AT2Rs and PP2A subunits to apical plasma membranes. CONCLUSIONS: In renal proximal tubule cells of Wistar-Kyoto rats, PP2A is activated and PP2A subunits AB55αC are recruited to C-21-activated AT2Rs during induction of natriuresis. This response is defective in prehypertensive and hypertensive spontaneously hypertensive rats, presenting a potential novel therapeutic target for treating renal Na+ retention and hypertension.


Asunto(s)
Riñón/metabolismo , Natriuresis , Proteína Fosfatasa 2/metabolismo , Receptor de Angiotensina Tipo 2/metabolismo , Animales , Células Cultivadas , GMP Cíclico/metabolismo , Femenino , Ratas , Ratas Wistar , Sodio/metabolismo
3.
Circ Res ; 126(5): 644-659, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31997705

RESUMEN

RATIONALE: Previous studies identified a defect in Ang III (angiotensin III [des-aspartyl1-angiotensin II])-elicited AT2R (Ang type-2 receptor)-mediated natriuresis in renal proximal tubule cells of spontaneously hypertensive rats (SHR). OBJECTIVE: This study aimed to delineate in prehypertensive SHR kidneys the receptor or postreceptor defect causing impaired AT2R signaling and renal sodium (Na+) retention by utilizing the selective AT2R agonist compound-21 (C-21). METHODS AND RESULTS: Female 4-week-old Wistar Kyoto and SHR rats were studied after 24-hour systemic AT1R (Ang II type-1 receptor) blockade. Left kidneys received 30-minute renal interstitial infusions of vehicle followed by C-21 (20, 40, and 60 ng/[kg·min], each dose 30 minutes). Right kidneys received vehicle infusions. In Wistar Kyoto, C-21 dose-dependently increased urine Na+ excretion from 0.023±0.01 to 0.064±0.02, 0.087±0.01, and 0.089±0.01 µmol/min (P=0.008, P<0.0001, and P<0.0001, respectively) and renal interstitial fluid levels of AT2R downstream signaling molecule cGMP (cyclic guanosine 3',5' monophosphate) from 0.91±0.3 to 3.1±1.0, 5.9±1.2 and 5.3±0.5 fmol/mL (P=nonsignificant, P<0.0001, and P<0.0001, respectively). In contrast, C-21 did not increase urine Na+ excretion or renal interstitial cGMP in SHR. Mean arterial pressure was slightly higher in SHR but within the normotensive range and unaffected by C-21. In Wistar Kyoto, but not SHR, C-21 induced AT2R translocation to apical plasma membranes of renal proximal tubule cells, internalization/inactivation of NHE-3 (sodium-hydrogen exchanger-3) and Na+/K+ATPase (sodium-potassium-atpase) and phosphorylation of AT2R-cGMP downstream signaling molecules Src (Src family kinase), ERK (extracellular signal-related kinase), and VASP (vasodilator-stimulated phosphoprotein). To test whether cGMP could bypass the natriuretic defect in SHR, we infused 8-bromo-cGMP. This restored natriuresis, Na+ transporter internalization/inactivation, and Src and VASP phosphorylation, but not apical plasma membrane AT2R recruitment. In contrast, 8-bromo-cAMP administration had no effect on natriuresis or AT2R recruitment in SHR. CONCLUSIONS: The results demonstrate a primary renal proximal tubule cell AT2R natriuretic defect in SHR that may contribute to the development of hypertension. Since the defect is abrogated by exogenous intrarenal cGMP, the renal cGMP pathway may represent a viable target for the treatment of hypertension. Visual Overview: An online visual overview is available for this article.


Asunto(s)
Hipertensión/metabolismo , Túbulos Renales Proximales/metabolismo , Natriuresis , Receptor de Angiotensina Tipo 2/metabolismo , Bloqueadores del Receptor Tipo 2 de Angiotensina II/farmacología , Animales , Moléculas de Adhesión Celular/metabolismo , GMP Cíclico/metabolismo , Líquido Extracelular/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Hipertensión/genética , Túbulos Renales Proximales/efectos de los fármacos , Proteínas de Microfilamentos/metabolismo , Fosfoproteínas/metabolismo , Fosforilación , Transporte de Proteínas , Ratas , Ratas Endogámicas SHR , Ratas Wistar , Sodio/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Familia-src Quinasas/metabolismo
4.
Curr Hypertens Rep ; 24(9): 361-374, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35708819

RESUMEN

PURPOSE OF REVIEW: To review the etiology of inverse salt sensitivity of blood pressure (BP). RECENT FINDINGS: Both high and low sodium (Na+) intake can be associated with increased BP and cardiovascular morbidity and mortality. However, little is known regarding the mechanisms involved in the increase in BP in response to low Na+ intake, a condition termed inverse salt sensitivity of BP, which affects approximately 15% of the adult population. The renal proximal tubule is important in regulating up to 70% of renal Na+ transport. The renin-angiotensin and renal dopaminergic systems play both synergistic and opposing roles in the regulation of Na+ transport in this nephron segment. Clinical studies have demonstrated that individuals express a "personal salt index" (PSI) that marks whether they are salt-resistant, salt-sensitive, or inverse salt-sensitive. Inverse salt sensitivity results in part from genetic polymorphisms in various Na+ regulatory genes leading to a decrease in natriuretic activity and an increase in renal tubular Na+ reabsorption leading to an increase in BP. This article reviews the potential mechanisms of a new pathophysiologic entity, inverse salt sensitivity of BP, which affects approximately 15% of the general adult population.


Asunto(s)
Enfermedades Cardiovasculares , Hipertensión , Adulto , Presión Sanguínea/fisiología , Enfermedades Cardiovasculares/complicaciones , Enfermedades Cardiovasculares/prevención & control , Dieta Hiposódica , Humanos , Hipertensión/tratamiento farmacológico , Hipertensión/etiología , Hipertensión/prevención & control , Sodio/uso terapéutico , Cloruro de Sodio , Cloruro de Sodio Dietético/efectos adversos
5.
Int J Mol Sci ; 23(4)2022 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-35216442

RESUMEN

Angiotensin II (Ang II) type-2 receptors (AT2R) are expressed in the adult kidney, prominently in renal proximal tubule cells (RPTCs), and play an important role in opposing renal sodium (Na+) retention induced by Ang II stimulation of Ang II type-1 receptor (AT1R). Natriuresis induced by AT1R blockade is due at least in part to AT2R activation and whole body deletion of AT2Rs reduces the natriuretic response to increased blood pressure (BP). The major endogenous AT2R agonist mediating the natriuretic response is Ang III, the Ang II heptapeptide metabolite generated by aminopeptidase A, and the principal nephron site mediating inhibition of Na+ reabsorption by the AT2R is the renal proximal tubule (RPT). AT2Rs induce natriuresis via a bradykinin, nitric oxide and cyclic GMP (cGMP) signaling cascade. Recent studies demonstrated a key role for protein phosphatase 2A (PP2A) in the AT2R-mediated natriuretic response upstream of cGMP. By inducing natriuresis, AT2Rs lower BP in the Ang II-infusion model of hypertension. PP2A activation and the natriuretic response to AT2R stimulation are defective in spontaneously hypertensive rats, a model of primary hypertension in humans. AT2R agonists are candidates for proximal tubule natriuretic agents in Na+ and fluid retention disorders.


Asunto(s)
Túbulos Renales Proximales/metabolismo , Natriuresis/fisiología , Receptor de Angiotensina Tipo 2/metabolismo , Animales , Humanos , Hipertensión/metabolismo , Transductores
6.
Circ Res ; 119(4): 532-43, 2016 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-27323774

RESUMEN

RATIONALE: Compound 21 (C-21) is a highly selective nonpeptide angiotensin AT2 receptor (AT2R) agonist. OBJECTIVE: To test the hypothesis that chronic AT2R activation with C-21 induces natriuresis via an action at the renal proximal tubule (RPT) and lowers blood pressure (BP) in experimental angiotensin II (Ang II)-dependent hypertension. METHODS AND RESULTS: In rats, Ang II infusion increased both sodium (Na(+)) retention and BP on day 1, and BP remained elevated throughout the 7-day infusion period. Either intrarenal or systemic administration of C-21 prevented Ang II-mediated Na(+) retention on day 1, induced continuously negative cumulative Na(+) balance compared with Ang II alone, and reduced BP chronically. The effects of C-21 are likely to be mediated by action on the RPT as acute systemic C-21-induced natriuresis was additive to that induced by chlorothiazide and amiloride. At 24 hours of Ang II infusion, AT2R activation with C-21, both intrarenally and systemically, translocated AT2Rs from intracellular sites to the apical plasma membranes of RPT cells without altering the total cellular pool of AT2Rs and internalized/inactivated major RPT Na(+) transporters Na(+)-H(+)-exchanger-3 and Na(+)/K(+)ATPase. C-21 lowered BP to a similar degree whether administered before or subsequent to the establishment of Ang II-dependent hypertension. CONCLUSIONS: Chronic AT2R activation initiates and sustains receptor translocation to RPT apical plasma membranes, internalizes/inactivates Na(+)-H(+)-exchanger-3 and Na(+)/K(+)ATPase, prevents Na(+) retention resulting in negative cumulative Na(+) balance, and lowers BP in experimental Ang II-induced hypertension. Acting uniquely at the RPT, C-21 is a promising candidate for the treatment of hypertension and Na(+)-retaining states in humans.


Asunto(s)
Angiotensina II/toxicidad , Presión Sanguínea/fisiología , Hipertensión/metabolismo , Natriuresis/fisiología , Receptor de Angiotensina Tipo 2/metabolismo , Sodio/orina , Bloqueadores del Receptor Tipo 2 de Angiotensina II/farmacología , Animales , Presión Sanguínea/efectos de los fármacos , Femenino , Hipertensión/inducido químicamente , Hipertensión/tratamiento farmacológico , Natriuresis/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptor de Angiotensina Tipo 2/agonistas , Sulfonamidas/farmacología , Sulfonamidas/uso terapéutico , Tiofenos/farmacología , Tiofenos/uso terapéutico
7.
Circ Res ; 115(3): 388-99, 2014 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-24903104

RESUMEN

RATIONALE: Compound 21 (C-21) is a highly selective nonpeptide AT2 receptor (AT2R) agonist. OBJECTIVE: To test the hypothesis that renal proximal tubule AT2Rs induce natriuresis and lower blood pressure in Sprague-Dawley rats and mice. METHODS AND RESULTS: In rats, AT2R activation with intravenous C-21 increased urinary sodium excretion by 10-fold (P<0.0001); this natriuresis was abolished by direct renal interstitial infusion of specific AT2R antagonist PD-123319. C-21 increased fractional excretion of Na(+) (P<0.05) and lithium (P<0.01) without altering renal hemodynamic function. AT2R activation increased renal proximal tubule cell apical membrane AT2R protein (P<0.001) without changing total AT2R expression and internalized/inactivated Na(+)-H(+) exchanger-3 and Na(+)/K(+)ATPase. C-21-induced natriuresis was accompanied by an increase in renal interstitial cGMP (P<0.01); C-21-induced increases in urinary sodium excretion and renal interstitial cGMP were abolished by renal interstitial nitric oxide synthase inhibitor l-N(6)-nitroarginine methyl ester or bradykinin B2 receptor antagonist icatibant. Renal AT2R activation with C-21 prevented Na(+) retention and lowered blood pressure in the angiotensin II infusion model of experimental hypertension. CONCLUSIONS: AT2R activation initiates its translocation to the renal proximal tubule cell apical membrane and the internalization of Na(+)-H(+) exchanger-3 and Na(+)/K(+)ATPase, inducing natriuresis in a bradykinin-nitric oxide-cGMP-dependent manner. Intrarenal AT2R activation prevents Na(+) retention and lowers blood pressure in angiotensin II-dependent hypertension. AT2R activation holds promise as a renal proximal tubule natriuretic/diuretic target for the treatment of fluid-retaining states and hypertension.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , Hipertensión Renal/tratamiento farmacológico , Natriuresis/efectos de los fármacos , Receptor de Angiotensina Tipo 2/agonistas , Sulfonamidas/farmacología , Tiofenos/farmacología , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Bloqueadores del Receptor Tipo 2 de Angiotensina II/farmacología , Animales , Presión Sanguínea/fisiología , Bradiquinina/análogos & derivados , Bradiquinina/farmacología , Antagonistas de los Receptores de Bradiquinina , Inhibidores Enzimáticos/farmacología , Femenino , Tasa de Filtración Glomerular/efectos de los fármacos , Tasa de Filtración Glomerular/fisiología , Hipertensión Renal/fisiopatología , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/fisiología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , NG-Nitroarginina Metil Éster/farmacología , Natriuresis/fisiología , Ratas , Ratas Sprague-Dawley , Receptor de Angiotensina Tipo 2/genética , Circulación Renal/efectos de los fármacos , Circulación Renal/fisiología
8.
Curr Hypertens Rep ; 18(9): 71, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27628629

RESUMEN

The sodium bicarbonate cotransporter (NBCe2, aka NBC4) was originally isolated from the human testis and heart (Pushkin et al. IUBMB Life 50:13-19, 2000). Subsequently, NBCe2 was found in diverse locations where it plays a role in regulating sodium and bicarbonate transport, influencing intracellular, extracellular, interstitial, and ultimately plasma pH (Boron et al. J Exp Biol. 212:1697-1706, 2009; Parker and Boron, Physiol Rev. 93:803-959, 2013; Romero et al. Mol Asp Med. 34:159-182, 2013). NBCe2 is located in human and rodent renal-collecting duct and proximal tubule. While much is known about the two electrogenic sodium bicarbonate cotransporters, NBCe1 and NBCe2, in the regulation of sodium homeostasis and pH balance in the rodent kidney, little is known about their roles in human renal physiology. NBCe2 is located in the proximal tubule Golgi apparatus under basal conditions and then disperses throughout the cell, but particularly into the apical membrane microvilli, during various maneuvers that increase intracellular sodium. This review will summarize our current understanding of the distribution and function of NBCe2 in the human kidney and how genetic variants of its gene, SLC4A5, contribute to salt sensitivity of blood pressure.


Asunto(s)
Presión Sanguínea/fisiología , Homeostasis/fisiología , Hipertensión/metabolismo , Riñón/metabolismo , Simportadores de Sodio-Bicarbonato/metabolismo , Sodio/metabolismo , Animales , Humanos , Concentración de Iones de Hidrógeno , Hipertensión/fisiopatología
9.
Am J Physiol Regul Integr Comp Physiol ; 309(11): R1447-59, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26447209

RESUMEN

The electrogenic sodium bicarbonate cotransporter (NBCe2) is encoded by SLC4A5, variants of which have been associated with salt sensitivity of blood pressure, which affects 25% of the adult population. NBCe2 is thought to mediate sodium bicarbonate cotransport primarily in the renal collecting duct, but NBCe2 mRNA is also found in the rodent renal proximal tubule (RPT). The protein expression or function of NBCe2 has not been demonstrated in the human RPT. We validated an NBCe2 antibody by shRNA and Western blot analysis, as well as overexpression of an epitope-tagged NBCe2 construct in both RPT cells (RPTCs) and human embryonic kidney 293 (HEK293) cells. Using this validated NBCe2 antibody, we found NBCe2 protein expression in the RPT of fresh and frozen human kidney slices, RPTCs isolated from human urine, and isolated RPTC apical membrane. Under basal conditions, NBCe2 was primarily found in the Golgi, while NBCe1 was primarily found at the basolateral membrane. Following an acute short-term increase in intracellular sodium, NBCe2 expression was increased at the apical membrane in cultured slices of human kidney and polarized, immortalized RPTCs. Sodium bicarbonate transport was increased by monensin and overexpression of NBCe2, decreased by NBCe2 shRNA, but not by NBCe1 shRNA, and blocked by 2,2'-(1,2-ethenediyl)bis[5-isothiocyanato-benzenesulfonic acid]. NBCe2 could be important in apical sodium and bicarbonate cotransport under high-salt conditions; the implication of the ex vivo studies to the in vivo situation when salt intake is increased remains unclear. Therefore, future studies will examine the role of NBCe2 in mediating increased renal sodium transport in humans whose blood pressures are elevated by an increase in sodium intake.


Asunto(s)
Bicarbonatos/metabolismo , Túbulos Renales Proximales/metabolismo , Simportadores de Sodio-Bicarbonato/metabolismo , Sodio/metabolismo , Membrana Celular/metabolismo , Aparato de Golgi/metabolismo , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Túbulos Renales Proximales/efectos de los fármacos , Monensina/farmacología , Transporte de Proteínas , Interferencia de ARN , Simportadores de Sodio-Bicarbonato/efectos de los fármacos , Simportadores de Sodio-Bicarbonato/genética , Factores de Tiempo , Transfección
10.
Kidney Int ; 86(1): 118-26, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24552847

RESUMEN

Determining the individual roles of the two dopamine D1-like receptors (D1R and D5R) on sodium transport in the human renal proximal tubule has been complicated by their structural and functional similarity. Here we used a novel D5R-selective antagonist (LE-PM436) and D1R- or D5R-specific gene silencing to determine second messenger coupling pathways and heterologous receptor interaction between the two receptors. D1R and D5R colocalize in renal proximal tubule cells and physically interact, as determined by co-immunoprecipitation and fluorescent resonance energy transfer microscopy. Stimulation of renal proximal tubule cells with fenoldopam (D1R/D5R agonist) led to both adenylyl cyclase and phospholipase C (PLC) activation using real-time fluorescent resonance energy transfer biosensors ICUE3 and CYPHR, respectively. Fenoldopam increased cAMP accumulation and PLC activity and inhibited both NHE3 and NaKATPase activities. LE-PM436 and D5R siRNA blocked the fenoldopam-stimulated PLC pathway but not cAMP accumulation, whereas D1R siRNA blocked both fenoldopam-stimulated cAMP accumulation and PLC signaling. Either D1R or D5R siRNA, or LE-PM436 blocked the fenoldopam-dependent inhibition of sodium transport. Further studies using the cAMP-selective D1R/D5R agonist SKF83822 and PLC-selective D1R/D5R agonist SKF83959 confirmed the cooperative influence of the two pathways on sodium transport. Thus, D1R and D5R interact in the inhibition of NHE3 and NaKATPase activity, the D1R primarily by cAMP, whereas the D1R/D5R heteromer modulates the D1R effect through a PLC pathway.


Asunto(s)
Túbulos Renales Proximales/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D5/metabolismo , Sodio/metabolismo , Benzazepinas/farmacología , Transporte Biológico Activo/efectos de los fármacos , Células Cultivadas , Agonistas de Dopamina/farmacología , Antagonistas de Dopamina/farmacología , Fenoldopam/farmacología , Transferencia Resonante de Energía de Fluorescencia , Células HEK293 , Humanos , Túbulos Renales Proximales/efectos de los fármacos , Modelos Biológicos , ARN Interferente Pequeño/genética , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/antagonistas & inhibidores , Receptores de Dopamina D5/agonistas , Receptores de Dopamina D5/antagonistas & inhibidores , Sistemas de Mensajero Secundario
11.
Kidney Int ; 84(3): 501-8, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23698230

RESUMEN

The main distal nephron segment sodium transporters are the distal tubule chlorothiazide-sensitive sodium chloride cotransporter (NCC) and the collecting duct amiloride-sensitive epithelial sodium channel (ENaC). The infusion of ghrelin into the renal interstitium stimulates distal nephron-dependent sodium reabsorption in normal rats, but the mechanism is unknown. Here we localize renal ghrelin receptors (GR) to the cortical collecting duct (CCD). Ghrelin significantly increased phosphorylated serum/glucocorticoid-regulated kinase-1 (pSGK1), a major upstream signaling intermediate regulating ENaC. To test whether increased apical membrane αENaC induced the antinatriuresis, ghrelin was infused in the presence of acute and chronic amiloride, a selective inhibitor of ENaC. In the presence of amiloride, renal interstitial ghrelin failed to reduce urine sodium excretion, suggesting that ghrelin-induced sodium reabsorption is dependent on intact ENaC activity. While the main sodium transporter of the CCD is ENaC, NCC is also present. In response to renal interstitial ghrelin infusion, neither total nor phosphorylated NCC levels are altered. Ghrelin-induced sodium reabsorption persisted in the presence of chlorothiazide (selective inhibitor of NCC), indicating that intact NCC activity is not necessary for ghrelin-induced antinatriuresis. Finally, renal interstitial ghrelin infusion significantly increased interstitial cAMP levels and adenylyl cyclase blockade abolished ghrelin-induced antinatriuresis. Thus, GRs expressed in the CCD regulate sodium reabsorption by cAMP-induced trafficking of ENaC to the apical membrane.


Asunto(s)
AMP Cíclico/fisiología , Canales Epiteliales de Sodio/fisiología , Túbulos Renales Colectores/fisiología , Receptores de Ghrelina/fisiología , Transducción de Señal/fisiología , Sodio/metabolismo , Amilorida/farmacología , Animales , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/fisiología , Clorotiazida/farmacología , Femenino , Ghrelina/farmacología , Proteínas Inmediatas-Precoces/fisiología , Modelos Animales , Proteínas Serina-Treonina Quinasas/fisiología , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
12.
J Cell Sci Ther ; 13(2)2022.
Artículo en Inglés | MEDLINE | ID: mdl-37994311

RESUMEN

Hypertension and breast cancer are two common diseases occurring in women. Clinical studies have shown increased breast cancer incidence in hypertensive women. Several lines of evidence demonstrate that G protein-coupled Receptor Kinase 4 (GRK4) could be a common risk factor for hypertension and breast cancer. This article reviews our current understanding of molecular mechanisms of GRK4 in hypertension and breast cancer.

13.
Biomedicines ; 10(11)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36359330

RESUMEN

High and low sodium diets are associated with increased blood pressure and cardiovascular morbidity and mortality. The paradoxical response of elevated BP in low salt diets, aka inverse salt sensitivity (ISS), is an understudied vulnerable 11% of the adult population with yet undiscovered etiology. A linear relationship between the number of single nucleotide polymorphisms (SNPs) in the dopamine D2 receptor (DRD2, rs6276 and 6277), and the sodium myo-inositol cotransporter 2 (SLC5A11, rs11074656), as well as decreased expression of these two genes in urine-derived renal proximal tubule cells (uRPTCs) isolated from clinical study participants suggest involvement of these cells in ISS. Insight into this newly discovered paradoxical response to sodium is found by incubating cells in low sodium (LS) conditions that unveil cell physiologic differences that are then reversed by mir-485-5p miRNA blocker transfection and bypassing the genetic defect by DRD2 re-expression. The renin-angiotensin system (RAS) is an important counter-regulatory mechanism to prevent hyponatremia under LS conditions. Oversensitive RAS under LS conditions could partially explain the increased mortality in ISS. Angiotensin-II (AngII, 10 nmol/L) increased sodium transport in uRPTCs to a greater extent in individuals with ISS than SR. Downstream signaling of AngII is verified by identifying lowered expression of nuclear factor erythroid 2-related factor 2 (NRF2), CCCTC-binding factor (CTCF), and manganese-dependent mitochondrial superoxide dismutase (SOD2) only in ISS-derived uRPTCs and not SR-derived uRPTCs when incubated in LS conditions. We conclude that DRD2 and SLC5A11 variants in ISS may cause an increased low sodium sensitivity to AngII and renal sodium reabsorption which can contribute to inverse salt-sensitive hypertension.

14.
Biomedicines ; 10(5)2022 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-35625718

RESUMEN

Salt sensitivity of blood pressure (BP) refers to an increase in BP following an increase in dietary salt, which is associated with increased incidence of cardiovascular disease and early death. However, decreased sodium intake also increases mortality and morbidity. Inverse salt sensitivity (ISS), defined as a paradoxical increase in BP on a low-salt diet, about 11% of the population, may be the cause of this phenomenon. The epithelial sodium channel (ENaC) is a major regulator of sodium reabsorption in the kidney. In this study, human renal tubular epithelial cells (hRTC) were cultured from the urine of phenotyped salt study participants. αENaC expression was significantly lower in ISS than salt resistant (SR) hRTC, while ENaC-like channel activity was dramatically increased by trypsin treatment in ISS cells analyzed by patch clamp. αENaC expression was also decreased under high-salt treatment and increased by aldosterone treatment in ISS cells. Moreover, the αENaC variant, rs4764586, was more prevalent in ISS. In summary, αENaC may be associated with ISS hypertension on low salt. These findings may contribute to understanding the mechanisms of ISS and low salt effect on morbidity and mortality.

15.
PLoS One ; 17(9): e0273313, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36129874

RESUMEN

HIV-associated nephropathy (HIVAN) impairs functions of both glomeruli and tubules. Attention has been previously focused on the HIVAN glomerulopathy. Tubular injury has drawn increased attention because sodium wasting is common in hospitalized HIV/AIDS patients. We used viral protein R (Vpr)-transgenic mice to investigate the mechanisms whereby Vpr contributes to urinary sodium wasting. In phosphoenolpyruvate carboxykinase promoter-driven Vpr-transgenic mice, in situ hybridization showed that Vpr mRNA was expressed in all nephron segments, including the distal convoluted tubule. Vpr-transgenic mice, compared with wild-type littermates, markedly increased urinary sodium excretion, despite similar plasma renin activity and aldosterone levels. Kidneys from Vpr-transgenic mice also markedly reduced protein abundance of the Na+-Cl- cotransporter (NCC), while mineralocorticoid receptor (MR) protein expression level was unchanged. In African green monkey kidney cells, Vpr abrogated the aldosterone-mediated stimulation of MR transcriptional activity. Gene expression of Slc12a3 (NCC) in Vpr-transgenic mice was significantly lower compared with wild-type mice, assessed by both qRT-PCR and RNAScope in situ hybridization analysis. Chromatin immunoprecipitation assays identified multiple MR response elements (MRE), located from 5 kb upstream of the transcription start site and extending to the third exon of the SLC12A3 gene. Mutation of MRE and SP1 sites in the SLC12A3 promoter region abrogated the transcriptional responses to aldosterone and Vpr, indicating that functional MRE and SP1 are required for the SLC12A3 gene suppression in response to Vpr. Thus, Vpr attenuates MR transcriptional activity and inhibits Slc12a3 transcription in the distal convoluted tubule and contributes to salt wasting in Vpr-transgenic mice.


Asunto(s)
Productos del Gen vpr , VIH-1 , Aldosterona/metabolismo , Aldosterona/farmacología , Animales , Chlorocebus aethiops , Productos del Gen vpr/metabolismo , VIH-1/genética , Túbulos Renales Distales/metabolismo , Ratones , Ratones Transgénicos , Fosfoenolpiruvato , ARN Mensajero/metabolismo , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Renina/metabolismo , Sodio/metabolismo , Cloruro de Sodio/metabolismo , Simportadores del Cloruro de Sodio/metabolismo , Miembro 3 de la Familia de Transportadores de Soluto 12/genética , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Tiazidas
16.
Am J Physiol Renal Physiol ; 300(4): F914-20, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21289050

RESUMEN

Renal dopamine receptor function and ion transport inhibition are impaired in essential hypertension. We recently reported that caveolin-1 (CAV1) and lipid rafts are necessary for normal D(1)-like receptor-dependent internalization of Na-K-ATPase in human proximal tubule cells. We now hypothesize that CAV1 is necessary for the regulation of urine sodium (Na(+)) excretion (U(Na)V) and mean arterial blood pressure (MAP) in vivo. Acute renal interstitial (RI) infusion into Sprague-Dawley rats of 1 µg·kg⁻¹·min⁻¹ fenoldopam (FEN; D(1)-like receptor agonist) caused a 0.46 ± 0.15-µmol/min increase in U(Na)V (over baseline of 0.29 ± 0.04 µmol/min; P < 0.01). This increase was seen in Na(+)-loaded rats, but not in those under a normal-sodium load. Coinfusion with ß-methyl cyclodextrin (ßMCD; lipid raft disrupter, 200 µg·kg⁻¹·min⁻¹) completely blocked this FEN-induced natriuresis (P < 0.001). Long-term (3 day) lipid raft disruption via continuous RI infusion of 80 µg·kg⁻¹·min⁻¹ ßMCD decreased renal cortical CAV1 expression (47.3 ± 6.4%; P < 0.01) and increased MAP (32.4 ± 6.6 mmHg; P < 0.001) compared with vehicle-infused animals. To determine whether the MAP rise was due to a CAV1-dependent lipid raft-mediated disruption, Na(+)-loaded rats were given a bolus RI infusion of CAV1 siRNA. Two days postinfusion, cortical CAV1 expression was decreased by 73.6 ± 8.2% (P < 0.001) and the animals showed an increase in MAP by 17.4 ± 2.9 mmHg (P < 0.01) compared with animals receiving scrambled control siRNA. In summary, acute kidney-specific lipid raft disruption decreases CAV1 expression and blocks D(1)-like receptor-induced natriuresis. Furthermore, chronic disruption of lipid rafts or CAV1 protein expression in the kidney induces hypertension.


Asunto(s)
Caveolina 1/metabolismo , Hipertensión/metabolismo , Riñón/metabolismo , Natriuresis/fisiología , Sodio en la Dieta/metabolismo , Análisis de Varianza , Animales , Caveolina 1/genética , Femenino , Técnica del Anticuerpo Fluorescente , Hipertensión/fisiopatología , Inmunoprecipitación , Riñón/fisiopatología , ARN Interferente Pequeño , Ratas , Ratas Sprague-Dawley , Sodio en la Dieta/farmacología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
17.
J Clin Invest ; 118(6): 2180-9, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18464932

RESUMEN

Hypertension is a multigenic disorder in which abnormal counterregulation between dopamine and Ang II plays a role. Recent studies suggest that this counterregulation results, at least in part, from regulation of the expression of both the antihypertensive dopamine 5 receptor (D5R) and the prohypertensive Ang II type 1 receptor (AT1R). In this report, we investigated the in vivo and in vitro interaction between these GPCRs. Disruption of the gene encoding D5R in mice increased both blood pressure and AT1R protein expression, and the increase in blood pressure was reversed by AT1R blockade. Activation of D5R increased the degradation of glycosylated AT1R in proteasomes in HEK cells and human renal proximal tubule cells heterologously and endogenously expressing human AT1R and D5R. Confocal microscopy, Förster/fluorescence resonance energy transfer microscopy, and fluorescence lifetime imaging microscopy revealed that activation of D5R initiated ubiquitination of the glycosylated AT1R at the plasma membrane. The regulated degradation of AT1R via a ubiquitin/proteasome pathway by activation of D5R provides what we believe to be a novel mechanism whereby blood pressure can be regulated by the interaction of 2 counterregulatory GPCRs. Our results therefore suggest that treatments for hypertension might be optimized by designing compounds that can target the AT1R and the D5R.


Asunto(s)
Regulación de la Expresión Génica , Complejo de la Endopetidasa Proteasomal/metabolismo , Receptores de Angiotensina/metabolismo , Receptores de Dopamina D5/fisiología , Ubiquitina/metabolismo , Animales , Presión Sanguínea , Línea Celular , Membrana Celular/metabolismo , Glicosilación , Humanos , Túbulos Renales/metabolismo , Ratones , Modelos Biológicos , Receptores de Dopamina D5/genética
19.
Breast Cancer (Auckl) ; 15: 11782234211015753, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34103922

RESUMEN

PURPOSE: Clinical studies have shown that breast cancer risk is increased in hypertensive women. The underlying molecular mechanism remains undetermined. The current study tests our hypothesis that G protein coupled receptor kinase 4 (GRK4) is a molecule that links hypertension and breast cancer. GRK4 plays an important role in regulation of renal sodium excretion. Sustained activation of GRK4 as in the circumstances of single nucleotide polymorphism (SNPs) causes hypertension. Expression of GRK4 in the kidney is regulated by cMyc, an oncogene that is amplified in breast cancer. METHODS: Western analysis was used to evaluate GRK4 protein expression in seven breast cancer cell lines. GRK4 gene single nucleotide polymorphism in breast cancer cell lines and in breast cancer cDNA arrays were determined using TaqMan Genotyping qPRC. The function of GRK4 was evaluated in MCF-7 cells with cMyc knock-down and GRK4 re-expression and in MDA-MB-468 cells expressing inducible GRK4 shRNA lentivirus constructs. Nuclei counting and 5-Bromo-2'-deoxy-uridine (BrdU) labeling were used to evaluate cell growth and proliferation. RESULTS: Genotyping of GRK4 SNPs in breast cancer cDNA arrays (n = 94) revealed that the frequency of carrying two hypertension related SNPs A142 V or R65 L is threefold higher in breast cancer patients than in healthy people (P = 7.53E-11). GRK4 protein is expressed in seven breast cancer cell lines but not the benign mammary epithelial cell line, MCF-10A. Three hypertension related SNPs in the GRK4 gene were identified in the breast cancer cell lines. Except for BT20, all other breast cancer lines have 1-3 GRK4 SNPs of which A142 V occurs in all 6 lines. MDA-MB-468 cells contain homozygous A142 V and R65 L SNPs. Knocking down cMyc in MCF-7 cells significantly reduced the growth rate, which was rescued by re-expression of GRK4. We then generated three stable GRK4 knock-down MDA-MB-468 lines using inducible lentiviral shRNA vectors. Doxycycline (Dox) induced GRK4 silencing significantly reduced GRK4 mRNA and protein levels, growth rates, and proliferation. As a marker of cell proliferation, the percentage of BrdU-labeled cells decreased from 45 ± 3% in the cells without Dox to 32 ± 5% in the cells treated with 0.1 µg/mL Dox. CONCLUSIONS: GRK4 acts as an independent proliferation promotor in breast cancer. Our results suggest that targeted inhibition of GRK4 could be a new therapy for both hypertension and breast cancer.

20.
Endocrinology ; 162(12)2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34534267

RESUMEN

ATP6AP2 expression is increased in the nephron during high-fat diet (HFD) and its knockout (ATP6AP2 KO) reduces body weight (WT) in mice. We evaluated the contribution of ATP6AP2 to urinary glucose (UG) and albumin (Ualb) handling during HFD. We hypothesized that nephron ATP6AP2 KO increases UG and Ualb and minimizes HFD-induced obesity. Eight-week-old male C57BL/6J mice with inducible nephron-specific ATP6AP2 KO and noninduced controls were fed either normal diet (ND, 12% kcal fat) or HFD (45% kcal fat) for 6 months. ATP6AP2 KO mice on ND had 20% (P < 0.01) lower WT compared with controls. HFD-fed mice had 41% (P < 0.05) greater WT than ND-fed control mice. In contrast, ATP6AP2 KO abrogated the increase in WT induced by HFD by 40% (P < 0.05). Mice on HFD had less caloric intake compared with ND controls (P < 0.01). There were no significant differences in metabolic rate between all groups. UG and Ualb was significantly increased in ATP6AP2 KO mice on both ND and HFD. ATP6AP2 KO showed greater levels of proximal tubule apoptosis and histologic evidence of proximal tubule injury. In conclusion, our results demonstrate that nephron-specific ATP6AP2 KO is associated with glucosuria and albuminuria, most likely secondary to renal proximal tubule injury and/or dysfunction. Urinary loss of nutrients may have contributed to the reduced WT of knockout mice on ND and lack of WT gain in response to HFD. Future investigation should elucidate the mechanisms by which loss of renal ATP6AP2 causes proximal tubule injury and dysfunction.


Asunto(s)
Túbulos Renales Proximales/fisiología , Obesidad/genética , ATPasas de Translocación de Protón/fisiología , Receptores de Superficie Celular/fisiología , Animales , Dieta Alta en Grasa , Metabolismo Energético/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nefronas/metabolismo , Obesidad/metabolismo , Obesidad/prevención & control , Especificidad de Órganos/genética , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Insuficiencia Renal/genética , Insuficiencia Renal/metabolismo , Insuficiencia Renal/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA