Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nucleic Acids Res ; 48(9): 4681-4697, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32297952

RESUMEN

The miRNA pathway has three segments-biogenesis, targeting and downstream regulatory effectors. We aimed to better understand their cellular control by exploring the miRNA-mRNA-targeting relationships. We first used human evolutionarily conserved sites. Strikingly, AGOs 1-3 are all among the top 14 mRNAs with the highest miRNA site counts, along with ANKRD52, the phosphatase regulatory subunit of the recently identified AGO phosphorylation cycle; and the AGO phosphorylation cycle mRNAs share much more than expected miRNA sites. The mRNAs for TNRC6, which acts with AGOs to channel miRNA-mediated regulatory actions onto specific mRNAs, are also heavily miRNA-targeted. In contrast, upstream miRNA biogenesis mRNAs are not, and neither are downstream regulatory effectors. In short, binding site enrichment in miRNA targeting machinery mRNAs, but neither upstream biogenesis nor downstream effector mRNAs, was observed, endowing a cellular capacity for intensive and specific feedback control of the targeting activity. The pattern was confirmed with experimentally determined miRNA-mRNA target relationships. Moreover, genetic experiments demonstrated cellular utilization of this capacity. Thus, we uncovered a capacity for intensive, and specific, feedback-regulation of miRNA targeting activity directly by miRNAs themselves, i.e. segment-specific feedback auto-regulation of miRNA pathway, complementing miRNAs pairing with transcription factors to form hybrid feedback-loop.


Asunto(s)
Proteínas Argonautas/metabolismo , MicroARNs/metabolismo , ARN Mensajero/metabolismo , Proteínas Argonautas/genética , Sitios de Unión , Línea Celular , Células Madre Embrionarias/metabolismo , Retroalimentación Fisiológica , Humanos , Fosforilación , ARN Mensajero/química , RNA-Seq
2.
Nat Neurosci ; 26(3): 416-429, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36635496

RESUMEN

Loss-of-function variants of TREM2 are associated with increased risk of Alzheimer's disease (AD), suggesting that activation of this innate immune receptor may be a useful therapeutic strategy. Here we describe a high-affinity human TREM2-activating antibody engineered with a monovalent transferrin receptor (TfR) binding site, termed antibody transport vehicle (ATV), to facilitate blood-brain barrier transcytosis. Upon peripheral delivery in mice, ATV:TREM2 showed improved brain biodistribution and enhanced signaling compared to a standard anti-TREM2 antibody. In human induced pluripotent stem cell (iPSC)-derived microglia, ATV:TREM2 induced proliferation and improved mitochondrial metabolism. Single-cell RNA sequencing and morphometry revealed that ATV:TREM2 shifted microglia to metabolically responsive states, which were distinct from those induced by amyloid pathology. In an AD mouse model, ATV:TREM2 boosted brain microglial activity and glucose metabolism. Thus, ATV:TREM2 represents a promising approach to improve microglial function and treat brain hypometabolism found in patients with AD.


Asunto(s)
Enfermedad de Alzheimer , Células Madre Pluripotentes Inducidas , Humanos , Animales , Ratones , Microglía , Barrera Hematoencefálica , Distribución Tisular , Anticuerpos , Encéfalo , Modelos Animales de Enfermedad , Glicoproteínas de Membrana , Receptores Inmunológicos/genética
3.
Nat Commun ; 14(1): 5053, 2023 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-37598178

RESUMEN

Brain exposure of systemically administered biotherapeutics is highly restricted by the blood-brain barrier (BBB). Here, we report the engineering and characterization of a BBB transport vehicle targeting the CD98 heavy chain (CD98hc or SLC3A2) of heterodimeric amino acid transporters (TVCD98hc). The pharmacokinetic and biodistribution properties of a CD98hc antibody transport vehicle (ATVCD98hc) are assessed in humanized CD98hc knock-in mice and cynomolgus monkeys. Compared to most existing BBB platforms targeting the transferrin receptor, peripherally administered ATVCD98hc demonstrates differentiated brain delivery with markedly slower and more prolonged kinetic properties. Specific biodistribution profiles within the brain parenchyma can be modulated by introducing Fc mutations on ATVCD98hc that impact FcγR engagement, changing the valency of CD98hc binding, and by altering the extent of target engagement with Fabs. Our study establishes TVCD98hc as a modular brain delivery platform with favorable kinetic, biodistribution, and safety properties distinct from previously reported BBB platforms.


Asunto(s)
Barrera Hematoencefálica , Encéfalo , Animales , Ratones , Distribución Tisular , Anticuerpos , Ingeniería , Macaca fascicularis
4.
Clin Cancer Res ; 27(14): 4077-4088, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33820782

RESUMEN

PURPOSE: While the detection of AR-V7 in circulating tumor cells (CTC) is associated with resistance to abiraterone or enzalutamide in men with metastatic castration-resistant prostate cancer (mCRPC), it only accounts for a minority of this resistance. Neuroendocrine (NE) differentiation or chromosomal instability (CIN) may be additional mechanisms that mediate resistance. EXPERIMENTAL DESIGN: PROPHECY was a multicenter prospective study of men with high-risk mCRPC starting abiraterone or enzalutamide. A secondary objective was to assess Epic CTC CIN and NE phenotypes before abiraterone or enzalutamide and at progression. The proportional hazards (PH) model was used to investigate the prognostic importance of CIN and NE in predicting progression-free survival and overall survival (OS) adjusting for CTC number (CellSearch), AR-V7, prior therapy, and clinical risk score. The PH model was utilized to validate this association of NE with OS in an external dataset of patients treated similarly at Memorial Sloan Kettering Cancer Center (MSKCC; New York, NY). RESULTS: We enrolled 118 men with mCRPC starting on abiraterone or enzalutamide; 107 were evaluable on the Epic platform. Of these, 36.4% and 8.4% were CIN positive and NE positive, respectively. CIN and NE were independently associated with worse OS [HR, 2.2; 95% confidence interval (CI), 1.2-4.0 and HR 3.8; 95% CI, 1.2-12.3, respectively] when treated with abiraterone/enzalutamide. The prognostic significance of NE positivity for worse OS was confirmed in the MSKCC dataset (n = 173; HR, 5.7; 95% CI, 2.6-12.7). CONCLUSIONS: A high CIN and NE CTC phenotype is independently associated with worse survival in men with mCRPC treated with abiraterone/enzalutamide, warranting further prospective controlled predictive studies to inform treatment decisions.


Asunto(s)
Androstenos/uso terapéutico , Benzamidas/uso terapéutico , Inestabilidad Cromosómica , Células Neoplásicas Circulantes , Nitrilos/uso terapéutico , Feniltiohidantoína/uso terapéutico , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Adulto , Anciano , Anciano de 80 o más Años , Humanos , Masculino , Persona de Mediana Edad , Metástasis de la Neoplasia , Sistemas Neurosecretores , Fenotipo , Estudios Prospectivos , Neoplasias de la Próstata Resistentes a la Castración/inmunología , Neoplasias de la Próstata Resistentes a la Castración/patología , Resultado del Tratamiento
5.
J Circ Biomark ; 9: 13-19, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33717359

RESUMEN

INTRODUCTION: Here we describe the development of a protein immunofluorescent assay for the detection of nuclear-localized androgen receptor variant 7 (AR-V7) protein within circulating tumor cells (CTCs) identified in patient blood samples. Used in the clinic, the test result serves as a validated biomarker of futility for patients with progressing metastatic castration-resistant prostate cancer (mCRPC) who are treated with androgen receptor targeted therapies (AATT) in whom nuclear-localized AR-V7 CTCs are identified and have received level 2A evidence in the 2019 National Cancer Center Network (NCCN) guidelines (v1.0). METHODS: Assay development was completed on the Epic Sciences rare cell detection platform using control cell lines of known AR-V7 status and clinical testing of mCRPC patient samples obtained at the decision point in management. RESULTS AND CONCLUSIONS: Using these samples, all assay parameters, scoring criteria, and clinical cutoffs for positivity were prospectively selected and locked. After assay lock, blinded clinical validation testing was initiated on multiple, independent, clinical cohorts as reported by Scher et al (JAMA Oncol. 2016;2:1441-1449; JAMA Oncol. 2018;4:1179-1186) and Armstrong et al (J Clin Oncol. 2019;37:1120-1129).

6.
Cancer Res ; 80(22): 4892-4903, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-32816908

RESUMEN

Chromosomal instability (CIN) increases a tumor cell's ability to acquire chromosomal alterations, a mechanism by which tumor cells evolve, adapt, and resist therapeutics. We sought to develop a biomarker of CIN in circulating tumor cells (CTC) that are more likely to reflect the genetic diversity of patient's disease than a single-site biopsy and be assessed rapidly so as to inform treatment management decisions in real time. Large-scale transitions (LST) are genomic alterations defined as chromosomal breakages that generate chromosomal gains or losses of greater than or equal to10 Mb. Here we studied the relationship between the number of LST in an individual CTC determined by direct sequencing and morphologic features of the cells. This relationship was then used to develop a computer vision algorithm that utilizes CTC image features to predict the presence of a high (9 or more) versus low (8 or fewer) LST number in a single cell. As LSTs are a primary functional component of homologous recombination deficient cellular phenotypes, the image-based algorithm was studied prospectively on 10,240 CTCs in 367 blood samples obtained from 294 patients with progressing metastatic castration-resistant prostate cancer taken prior to starting a standard-of-care approved therapy. The resultant computer vision-based biomarker of CIN in CTCs in a pretreatment sample strongly associated with poor overall survival times in patients treated with androgen receptor signaling inhibitors and taxanes. SIGNIFICANCE: A rapidly assessable biomarker of chromosomal instability in CTC is associated with poor outcomes when detected in men with progressing mCRPC.


Asunto(s)
Algoritmos , Inestabilidad Cromosómica/genética , Células Neoplásicas Circulantes , Neoplasias de la Próstata Resistentes a la Castración/genética , Anciano , Anciano de 80 o más Años , Rotura Cromosómica , Variaciones en el Número de Copia de ADN , Progresión de la Enfermedad , Marcadores Genéticos , Variación Estructural del Genoma , Ensayos Analíticos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Neoplasias de la Próstata Resistentes a la Castración/sangre , Neoplasias de la Próstata Resistentes a la Castración/mortalidad , Neoplasias de la Próstata Resistentes a la Castración/patología , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA