Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39236265

RESUMEN

Cystic fibrosis is a genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. While cystic fibrosis is a multi-organ disease, the leading causes of morbidity and mortality are related to progressive lung disease. Current understanding of the effects of the broad spectrum of CFTR mutations on CFTR function has allowed for the development of CFTR modulator therapies. Despite the remarkable impact that these therapies have had, there remains a significant proportion of people with cystic fibrosis (estimated at 10-15% of the global cystic fibrosis population) who are genetically ineligible for, or intolerant to, current CFTR-targeting therapies and whose therapeutic needs remain unmet. Inhaled genetic therapies offer the prospect of addressing the unmet pulmonary treatment need in people with cystic fibrosis, with several approaches, including gene addition therapy (the focus of this review), RNA-based therapies, antisense oligonucleotides and gene editing, being explored. Various non-viral and viral vectors have been investigated for cystic fibrosis gene addition therapy for mutation-agnostic restoration of CFTR function in the lungs. Lentiviral vectors offer the prospect of highly efficient and long-lasting gene expression, and the potential to be safely and, in contrast to other commonly used viral vectors, effectively re-dosed. A third-generation lentiviral vector pseudotyped with Sendai virus F and HN envelope proteins (rSIV.F/HN) has been developed for the treatment of cystic fibrosis. Promising preclinical results support the progression of this vector carrying a full-length CFTR transgene (BI 3720931) into a first-in-human clinical trial expected to begin in 2024. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).

2.
Eur Respir J ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39174284

RESUMEN

RATIONALE AND OBJECTIVE: Cystic fibrosis (CF) is caused by mutations in the CF Transmembrane Conductance Regulator (CFTR) gene. CFTR modulators offer significant improvements, but approximately 10% of patients remain nonresponsive or are intolerant. This study provides an analysis of rSIV.F/HN, a lentiviral vector optimized for lung delivery, including CFTR protein expression, functional correction of CFTR defects and genomic integration site analysis in preparation for a first-in-human clinical trial. METHODS: Air-liquid interface cultures of primary human bronchial epithelial cells (HBEC) from CF patients (F508del/F508del), as well as a CFTR-deficient immortalized human lung epithelial cell line mimicking Class I (CFTR-null) homozygous mutations, were used to assess transduction efficiency. Quantification methods included a novel proximity ligation assay (PLA) for CFTR protein expression. For assessment of CFTR channel activity, Ussing chamber studies were conducted. The safety profile was assessed using integration site analysis and in vitro insertional mutagenesis studies. RESULTS: rSIV.F/HN expressed CFTR and restored CFTR-mediated chloride currents to physiological levels in primary F508del/F508del HBECs as well as in a Class I cells. In contrast, the latter could not be achieved by small-molecule CFTR modulators, underscoring the potential of gene therapy for this mutation class. Combination of rSIV.F/HN-CFTR with the potentiator ivacaftor showed a greater than additive effect. The genomic integration pattern showed no site predominance (frequency of occurrence ≤10%), and a low risk of insertional mutagenesis was observed in an in vitro immortalization assay. CONCLUSIONS: The results underscore rSIV.F/HN as a promising gene therapy vector for CF, providing a mutation-agnostic treatment option.

3.
Eur J Immunol ; 52(11): 1768-1775, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36106692

RESUMEN

SARS-CoV-2 is a newly emerged coronavirus, causing the global pandemic of respiratory coronavirus disease (COVID-19). The type I interferon (IFN) pathway is of particular importance for anti-viral defense and recent studies identified that type I IFNs drive early inflammatory responses to SARS-CoV-2. Here, we use a mouse model of SARS-CoV-2 infection, facilitating viral entry by intranasal recombinant Adeno-Associated Virus (rAAV) transduction of hACE2 in wildtype (WT) and type I IFN receptor-1 deficient (Ifnar1-/- ) mice, to study the role of type I IFN signalling and innate immune responses during SARS-CoV-2 infection. Our data show that type I IFN signalling is essential for inducing anti-viral effector responses to SARS-CoV-2, control of virus replication, and to prevent enhanced disease. Furthermore, hACE2-Ifnar1-/- mice had increased gene expression of the chemokine Cxcl1 and airway infiltration of neutrophils as well as reduced and delayed production of monocyte-recruiting chemokine CCL2. hACE2-Ifnar1-/- mice showed altered recruitment of inflammatory myeloid cells to the lung upon SARS-CoV-2 infection, with a shift from Ly6C+ to Ly6C- expressing cells. Together, our findings suggest that type I IFN signalling deficiency results in a dysregulated innate immune response to SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Inmunidad Innata , Receptor de Interferón alfa y beta , Animales , Ratones , COVID-19/inmunología , Interferón Tipo I , Pandemias , Receptor de Interferón alfa y beta/genética , SARS-CoV-2
4.
Nucleic Acids Res ; 49(3): e16, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33290561

RESUMEN

The gene and cell therapy fields are advancing rapidly, with a potential to treat and cure a wide range of diseases, and lentivirus-based gene transfer agents are the vector of choice for many investigators. Early cases of insertional mutagenesis caused by gammaretroviral vectors highlighted that integration site (IS) analysis was a major safety and quality control checkpoint for lentiviral applications. The methods established to detect lentiviral integrations using next-generation sequencing (NGS) are limited by short read length, inadvertent PCR bias, low yield, or lengthy protocols. Here, we describe a new method to sequence IS using Amplification-free Integration Site sequencing (AFIS-Seq). AFIS-Seq is based on amplification-free, Cas9-mediated enrichment of high-molecular-weight chromosomal DNA suitable for long-range Nanopore MinION sequencing. This accessible and low-cost approach generates long reads enabling IS mapping with high certainty within a single day. We demonstrate proof-of-concept by mapping IS of lentiviral vectors in a variety of cell models and report up to 1600-fold enrichment of the signal. This method can be further extended to sequencing of Cas9-mediated integration of genes and to in vivo analysis of IS. AFIS-Seq uses long-read sequencing to facilitate safety evaluation of preclinical lentiviral vector gene therapies by providing IS analysis with improved confidence.


Asunto(s)
Proteína 9 Asociada a CRISPR , Secuenciación de Nanoporos/métodos , Análisis de Secuencia de ADN/métodos , Integración Viral , Animales , Línea Celular , ADN Viral/análisis , Vectores Genéticos , Humanos , Lentivirus/genética , Ratones , Provirus/genética
5.
Thorax ; 77(12): 1229-1236, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35165144

RESUMEN

BACKGROUND: The COVID-19 pandemic continues to be a worldwide threat and effective antiviral drugs and vaccines are being developed in a joint global effort. However, some elderly and immune-compromised populations are unable to raise an effective immune response against traditional vaccines. AIMS: We hypothesised that passive immunity engineered by the in vivo expression of anti-SARS-CoV-2 monoclonal antibodies (mAbs), an approach termed vectored-immunoprophylaxis (VIP), could offer sustained protection against COVID-19 in all populations irrespective of their immune status or age. METHODS: We developed three key reagents to evaluate VIP for SARS-CoV-2: (i) we engineered standard laboratory mice to express human ACE2 via rAAV9 in vivo gene transfer, to allow in vivo assessment of SARS-CoV-2 infection, (ii) to simplify in vivo challenge studies, we generated SARS-CoV-2 Spike protein pseudotyped lentiviral vectors as a simple mimic of authentic SARS-CoV-2 that could be used under standard laboratory containment conditions and (iii) we developed in vivo gene transfer vectors to express anti-SARS-CoV-2 mAbs. CONCLUSIONS: A single intranasal dose of rAAV9 or rSIV.F/HN vectors expressing anti-SARS-CoV-2 mAbs significantly reduced SARS-CoV-2 mimic infection in the lower respiratory tract of hACE2-expressing mice. If translated, the VIP approach could potentially offer a highly effective, long-term protection against COVID-19 for highly vulnerable populations; especially immune-deficient/senescent individuals, who fail to respond to conventional SARS-CoV-2 vaccines. The in vivo expression of multiple anti-SARS-CoV-2 mAbs could enhance protection and prevent rapid mutational escape.


Asunto(s)
COVID-19 , Humanos , Ratones , Animales , Anciano , COVID-19/prevención & control , Vacunas contra la COVID-19 , SARS-CoV-2/genética , Pandemias/prevención & control , Anticuerpos Antivirales , Pulmón , Anticuerpos Neutralizantes
6.
Thorax ; 75(12): 1112-1115, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32883885

RESUMEN

When recombinant simian immunodeficiency virus (SIV) is pseudotyped with the F and HN glycoproteins from murine respiratory Sendai virus (rSIV.F/HN), it provides efficient lung cell targeting and lifelong transgene expression in the murine airways. We have shown that a single dose of rSIV.F/HN can direct stable expression of neutralising antibody against influenza in the murine airways and systemic circulation, and protects mice against two different influenza strains in lethal challenge experiments. These data suggest that rSIV.F/HN could be used as a vector for passive immunisation against influenza and other respiratory pathogens.


Asunto(s)
Anticuerpos Neutralizantes/genética , Vectores Genéticos/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Pulmón/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Virus de la Inmunodeficiencia de los Simios/genética , Animales , Anticuerpos Neutralizantes/inmunología , Expresión Génica , Vectores Genéticos/administración & dosificación , Glicoproteínas Hemaglutininas del Virus de la Influenza , Inmunización Pasiva , Inmunoglobulina G , Ratones , Virus Sendai/genética , Transgenes , Pérdida de Peso
7.
Gene Ther ; 25(5): 345-358, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30022127

RESUMEN

We have shown that a lentiviral vector (rSIV.F/HN) pseudotyped with the F and HN proteins from Sendai virus generates high levels of intracellular proteins after lung transduction. Here, we evaluate the use of rSIV.F/HN for production of secreted proteins. We assessed whether rSIV.F/HN transduction of the lung generates therapeutically relevant levels of secreted proteins in the lung and systemic circulation using human α1-anti-trypsin (hAAT) and factor VIII (hFVIII) as exemplars. Sedated mice were transduced with rSIV.F/HN carrying either the secreted reporter gene Gaussia luciferase or the hAAT or hFVIII cDNAs by nasal sniffing. rSIV.F/HN-hAAT transduction lead to therapeutically relevant hAAT levels (70 µg/ml) in epithelial lining fluid, with stable expression persisting for at least 19 months from a single application. Secreted proteins produced in the lung were released into the circulation and stable expression was detectable in blood. The levels of hFVIII in murine blood approached therapeutically relevant targets. rSIV.F/HN was also able to produce secreted hAAT and hFVIII in transduced human primary airway cells. rSIV.F/HN transduction of the murine lungs leads to long-lasting and therapeutically relevant levels of secreted proteins in the lung and systemic circulation. These data broaden the use of this vector platform for a large range of disease indications.


Asunto(s)
Proteína HN/metabolismo , Transfección/métodos , Proteínas Virales de Fusión/metabolismo , Animales , ADN Complementario/metabolismo , Factor VIII , Técnicas de Transferencia de Gen , Genes Reporteros , Terapia Genética , Vectores Genéticos , Humanos , Infecciones por Lentivirus , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/fisiología , Ratones , Sistemas de Translocación de Proteínas/genética , Virus Sendai/metabolismo , Transducción Genética/métodos
8.
Thorax ; 72(2): 137-147, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27852956

RESUMEN

We have recently shown that non-viral gene therapy can stabilise the decline of lung function in patients with cystic fibrosis (CF). However, the effect was modest, and more potent gene transfer agents are still required. Fuson protein (F)/Hemagglutinin/Neuraminidase protein (HN)-pseudotyped lentiviral vectors are more efficient for lung gene transfer than non-viral vectors in preclinical models. In preparation for a first-in-man CF trial using the lentiviral vector, we have undertaken key translational preclinical studies. Regulatory-compliant vectors carrying a range of promoter/enhancer elements were assessed in mice and human air-liquid interface (ALI) cultures to select the lead candidate; cystic fibrosis transmembrane conductance receptor (CFTR) expression and function were assessed in CF models using this lead candidate vector. Toxicity was assessed and 'benchmarked' against the leading non-viral formulation recently used in a Phase IIb clinical trial. Integration site profiles were mapped and transduction efficiency determined to inform clinical trial dose-ranging. The impact of pre-existing and acquired immunity against the vector and vector stability in several clinically relevant delivery devices was assessed. A hybrid promoter hybrid cytosine guanine dinucleotide (CpG)- free CMV enhancer/elongation factor 1 alpha promoter (hCEF) consisting of the elongation factor 1α promoter and the cytomegalovirus enhancer was most efficacious in both murine lungs and human ALI cultures (both at least 2-log orders above background). The efficacy (at least 14% of airway cells transduced), toxicity and integration site profile supports further progression towards clinical trial and pre-existing and acquired immune responses do not interfere with vector efficacy. The lead rSIV.F/HN candidate expresses functional CFTR and the vector retains 90-100% transduction efficiency in clinically relevant delivery devices. The data support the progression of the F/HN-pseudotyped lentiviral vector into a first-in-man CF trial in 2017.


Asunto(s)
Fibrosis Quística/genética , Fibrosis Quística/terapia , Terapia Genética/métodos , Lentivirus/genética , Animales , Expresión Génica , Técnicas de Transferencia de Gen , Vectores Genéticos , Humanos , Ratones , Factor 1 de Elongación Peptídica , Regiones Promotoras Genéticas
9.
Biochemistry ; 55(7): 1010-23, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26820614

RESUMEN

The efflux transporter P-glycoprotein (P-gp) plays a vital role in the transport of molecules across cell membranes and has been shown to interact with a panoply of functionally and structurally unrelated compounds. How human P-gp interacts with this large number of drugs has not been well understood, although structural flexibility has been implicated. To gain insight into this transporter's broad substrate specificity and to assess its ability to accommodate a variety of molecular and structural changes, we generated human-mouse P-gp chimeras by the exchange of homologous transmembrane and nucleotide-binding domains. High-level expression of these chimeras by BacMam- and baculovirus-mediated transduction in mammalian (HeLa) and insect cells, respectively, was achieved. There were no detectable differences between wild-type and chimeric P-gp in terms of cell surface expression, ability to efflux the P-gp substrates rhodamine 123, calcein-AM, and JC-1, or to be inhibited by the substrate cyclosporine A and the inhibitors tariquidar and elacridar. Additionally, expression of chimeric P-gp was able to confer a paclitaxel-resistant phenotype to HeLa cells characteristic of P-gp-mediated drug resistance. P-gp ATPase assays and photo-cross-linking with [(125)I]iodoarylazidoprazosin confirmed that transport and biochemical properties of P-gp chimeras were similar to those of wild-type P-gp, although differences in drug binding were detected when human and mouse transmembrane domains were combined. Overall, chimeras with one or two mouse P-gp domains were deemed functionally equivalent to human wild-type P-gp, demonstrating the ability of human P-gp to tolerate major structural changes.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Colorantes Fluorescentes/metabolismo , Modelos Moleculares , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/antagonistas & inhibidores , Subfamilia B de Transportador de Casetes de Unión a ATP/química , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Animales , Antineoplásicos/farmacología , Transporte Biológico/efectos de los fármacos , Línea Celular , Línea Celular Transformada , Resistencia a Antineoplásicos , Células HeLa , Humanos , Cinética , Lepidópteros , Moduladores del Transporte de Membrana/farmacología , Ratones , Fragmentos de Péptidos/antagonistas & inhibidores , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
10.
Thorax ; 69(10): 962-4, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25015239

RESUMEN

Gene therapy was suggested as a potential treatment for cystic fibrosis (CF), even before the identification of the CFTR gene. Initial enthusiasm has been tempered as it became apparent that reintroduction of the CFTR gene into the cells of the lung is more difficult than anticipated. Here, we review the major gene delivery vectors evaluated clinically, and suggest that advances in either plasmid DNA design and/or hybrid lentivirus biology may finally facilitate lung gene transfer with efficiencies sufficient for CF gene therapy to offer clinical benefit.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/terapia , Técnicas de Transferencia de Gen , Terapia Genética/métodos , Fibrosis Quística/genética , Humanos
11.
Mol Pharm ; 11(9): 2973-88, 2014 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-25029178

RESUMEN

Gene therapy for treating inherited diseases like cystic fibrosis might be achieved using multimodular nonviral lipid-based systems. To date, most optimizations have concerned cationic lipids rather than colipids. In this study, an original archaeal tetraether derivative was used as a colipid in combination with one or the other of two monocationic amphiphiles. The liposomes obtained, termed archaeosomes, were characterized regarding lipid self-assembling properties, macroscopic/microscopic structures, DNA condensation/neutralization/relaxation abilities, and colloidal stability in the presence of serum. In addition, gene transfer experiments were conducted in mice with lipid/DNA complexes being administered via systemic or local delivery routes. Altogether, the results showed that the tetraether colipid can provide complexes with different in vivo transfection abilities depending on the lipid combination, the lipid/colipid molar ratio, and the administration route. This original colipid appears thus as an innovative modular platform endowed with properties possibly beneficial for fine-tuning of in vivo lipofection and other biomedical applications.


Asunto(s)
Archaea/química , Cationes/química , Éteres/química , Lípidos/química , Tensoactivos/química , Animales , ADN/administración & dosificación , ADN/química , Femenino , Técnicas de Transferencia de Gen , Liposomas/química , Ratones , Transfección/métodos
12.
EBioMedicine ; 104: 105135, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38718684

RESUMEN

Interstitial lung diseases (ILDs) in adults and children (chILD) are a heterogeneous group of lung disorders leading to inflammation, abnormal tissue repair and scarring of the lung parenchyma often resulting in respiratory failure and death. Inherited factors directly cause, or contribute significantly to the risk of developing ILD, so called familial pulmonary fibrosis (FPF), and monogenic forms may have a poor prognosis and respond poorly to current treatments. Specific, variant-targeted or precision treatments are lacking. Clinical trials of repurposed drugs, anti-fibrotic medications and specific treatments are emerging but for many patients no interventions exist. We convened an expert working group to develop an overarching framework to address the existing research gaps in basic, translational, and clinical research and identified areas for future development of preclinical models, candidate medications and innovative clinical trials. In this Position Paper, we summarise working group discussions, recommendations, and unresolved questions concerning precision treatments for FPF.


Asunto(s)
Medicina de Precisión , Humanos , Medicina de Precisión/métodos , Animales , Manejo de la Enfermedad , Fibrosis Pulmonar/terapia , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/etiología , Ensayos Clínicos como Asunto
13.
Thorax ; 68(11): 1075-7, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23525080

RESUMEN

The UK Cystic Fibrosis Gene Therapy Consortium has been working towards clinical gene therapy for patients with cystic fibrosis for several years. We have recently embarked on a large, multi-dose clinical trial of a non-viral, liposome-based formulation powered for the first time to detect clinical benefit. The article describes the details of the protocol.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/uso terapéutico , Fibrosis Quística/terapia , Terapia Genética/métodos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Método Doble Ciego , Estudios de Seguimiento , Humanos , Estudios Prospectivos , Resultado del Tratamiento
14.
Thorax ; 68(6): 532-9, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23396354

RESUMEN

BACKGROUND: Clinical trials in cystic fibrosis (CF) have been hindered by the paucity of well characterised and clinically relevant outcome measures. AIM: To evaluate a range of conventional and novel biomarkers of CF lung disease in a multicentre setting as a contributing study in selecting outcome assays for a clinical trial of CFTR gene therapy. METHODS: A multicentre observational study of adult and paediatric patients with CF (>10 years) treated for a physician-defined exacerbation of CF pulmonary symptoms. Measurements were performed at commencement and immediately after a course of intravenous antibiotics. Disease activity was assessed using 46 assays across five key domains: symptoms, lung physiology, structural changes on CT, pulmonary and systemic inflammatory markers. RESULTS: Statistically significant improvements were seen in forced expiratory volume in 1 s (p<0.001, n=32), lung clearance index (p<0.01, n=32), symptoms (p<0.0001, n=37), CT scores for airway wall thickness (p<0.01, n=31), air trapping (p<0.01, n=30) and large mucus plugs (p=0.0001, n=31), serum C-reactive protein (p<0.0001, n=34), serum interleukin-6 (p<0.0001, n=33) and serum calprotectin (p<0.0001, n=31). DISCUSSION: We identify the key biomarkers of inflammation, imaging and physiology that alter alongside symptomatic improvement following treatment of an acute CF exacerbation. These data, in parallel with our study of biomarkers in patients with stable CF, provide important guidance in choosing optimal biomarkers for novel therapies. Further, they highlight that such acute therapy predominantly improves large airway parameters and systemic inflammation, but has less effect on airway inflammation.


Asunto(s)
Antibacterianos/administración & dosificación , Fibrosis Quística/tratamiento farmacológico , Volumen Espiratorio Forzado/fisiología , Enfermedades Pulmonares/tratamiento farmacológico , Pulmón/fisiopatología , Tomografía Computarizada por Rayos X , Adolescente , Adulto , Antibacterianos/uso terapéutico , Biomarcadores/sangre , Proteína C-Reactiva/metabolismo , Niño , Fibrosis Quística/diagnóstico , Fibrosis Quística/fisiopatología , Femenino , Humanos , Inyecciones Intravenosas , Interleucina-6/sangre , Complejo de Antígeno L1 de Leucocito/sangre , Pulmón/diagnóstico por imagen , Enfermedades Pulmonares/diagnóstico , Enfermedades Pulmonares/fisiopatología , Masculino , Recurrencia , Resultado del Tratamiento , Adulto Joven
15.
Am J Respir Crit Care Med ; 186(9): 846-56, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22955314

RESUMEN

RATIONALE: Ongoing efforts to improve pulmonary gene transfer thereby enabling gene therapy for the treatment of lung diseases, such as cystic fibrosis (CF), has led to the assessment of a lentiviral vector (simian immunodeficiency virus [SIV]) pseudotyped with the Sendai virus envelope proteins F and HN. OBJECTIVES: To place this vector onto a translational pathway to the clinic by addressing some key milestones that have to be achieved. METHODS: F/HN-SIV transduction efficiency, duration of expression, and toxicity were assessed in mice. In addition, F/HN-SIV was assessed in differentiated human air-liquid interface cultures, primary human nasal epithelial cells, and human and sheep lung slices. MEASUREMENTS AND MAIN RESULTS: A single dose produces lung expression for the lifetime of the mouse (~2 yr). Only brief contact time is needed to achieve transduction. Repeated daily administration leads to a dose-related increase in gene expression. Repeated monthly administration to mouse lower airways is feasible without loss of gene expression. There is no evidence of chronic toxicity during a 2-year study period. F/HN-SIV leads to persistent gene expression in human differentiated airway cultures and human lung slices and transduces freshly obtained primary human airway epithelial cells. CONCLUSIONS: The data support F/HN-pseudotyped SIV as a promising vector for pulmonary gene therapy for several diseases including CF. We are now undertaking the necessary refinements to progress this vector into clinical trials.


Asunto(s)
Fibrosis Quística/genética , Terapia Genética/métodos , Vectores Genéticos , Lentivirus/genética , Análisis de Varianza , Animales , Fibrosis Quística/terapia , Modelos Animales de Enfermedad , Femenino , Técnicas de Transferencia de Gen , Humanos , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/fisiopatología , Ratones , Ratones Endogámicos C57BL , Virus de la Inmunodeficiencia de los Simios
16.
Mol Ther Methods Clin Dev ; 26: 239-252, 2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-35892086

RESUMEN

A lentiviral vector (LV) pseudotype derived from the fusion (F) and hemagglutinin-neuraminidase (HN) glycoproteins of a murine respirovirus (Sendai virus) facilitates efficient targeting of murine lung in vivo. Since targeting of the human lung will depend upon the availability and distribution of receptors used by F/HN, we investigated transduction of primary human airway cells differentiated at the air-liquid interface (ALI). We observed targeting of human basal, ciliated, goblet, and club cells, and using a combination of sialidase enzymes and lectins, we showed that transduction is dependent on the availability of sialylated glycans, including α2,3 sialylated N-acetyllactosamine (LacNAc). Transduction via F/HN was 300-fold more efficient than another hemagglutinin-based LV pseudotype derived from influenza fowl plague virus (HA Rostock), despite similar efficiency reported in murine airways in vivo. Using specific glycans to inhibit hemagglutination, we showed this could be due to a greater affinity of F/HN for α2,3 sialylated LacNAc. Overall, these results highlight the importance of identifying the receptors used in animal and cell-culture models to predict performance in the human airways. Given the reported prevalence of α2,3 sialylated LacNAc on human pulmonary cells, these results support the suitability of the F/HN pseudotype for human lung gene therapy applications.

17.
Mol Ther Methods Clin Dev ; 24: 62-70, 2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-34977273

RESUMEN

Understanding pulmonary diseases requires robust culture models that are reproducible, sustainable in long-term culture, physiologically relevant, and suitable for assessment of therapeutic interventions. Primary human lung cells are physiologically relevant but cannot be cultured in vitro long term and, although engineered organoids are an attractive choice, they do not phenotypically recapitulate the lung parenchyma; overall, these models do not allow for the generation of reliable disease models. Recently, we described a new cell culture platform based on H441 cells that are grown at the air-liquid interface to produce the SALI culture model, for studying and correcting the rare interstitial lung disease surfactant protein B (SPB) deficiency. Here, we report the characterization of the effects of SALI culture conditions on the transcriptional profile of the constituent H441 cells. We further analyze the transcriptomics of the model in the context of surfactant metabolism and the disease phenotype through SFTPB knockout SALI cultures. By comparing the gene expression profile of SALI cultures with that of human lung parenchyma obtained via single-cell RNA sequencing, we found that SALI cultures are remarkably similar to human alveolar type II cells, implying clinical relevance of the SALI culture platform as a non-diseased human lung alveolar cell model.

18.
Hum Gene Ther ; 33(17-18): 893-912, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36074947

RESUMEN

The prospect of gene therapy for inherited and acquired respiratory disease has energized the research community since the 1980s, with cystic fibrosis, as a monogenic disorder, driving early efforts to develop effective strategies. The fact that there are still no approved gene therapy products for the lung, despite many early phase clinical trials, illustrates the scale of the challenge: In the 1990s, first-generation non-viral and viral vector systems demonstrated proof-of-concept but low efficacy. Since then, there has been steady progress toward improved vectors with the capacity to overcome at least some of the formidable barriers presented by the lung. In addition, the inclusion of features such as codon optimization and promoters providing long-term expression have improved the expression characteristics of therapeutic transgenes. Early approaches were based on gene addition, where a new DNA copy of a gene is introduced to complement a genetic mutation: however, the advent of RNA-based products that can directly express a therapeutic protein or manipulate gene expression, together with the expanding range of tools for gene editing, has stimulated the development of alternative approaches. This review discusses the range of vector systems being evaluated for lung delivery; the variety of cargoes they deliver, including DNA, antisense oligonucleotides, messenger RNA (mRNA), small interfering RNA (siRNA), and peptide nucleic acids; and exemplifies progress in selected respiratory disease indications.


Asunto(s)
Ácidos Nucleicos de Péptidos , ADN , Técnicas de Transferencia de Gen , Terapia Genética/métodos , Vectores Genéticos/genética , Oligonucleótidos Antisentido , ARN Mensajero , ARN Interferente Pequeño/genética
19.
Front Immunol ; 13: 819058, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35529866

RESUMEN

Vaccines for COVID-19 are now a crucial public health need, but the degree of protection provided by conventional vaccinations for individuals with compromised immune systems is unclear. The use of viral vectors to express neutralizing monoclonal antibodies (mAbs) in the lung is an alternative approach that does not wholly depend on individuals having intact immune systems and responses. Here, we identified an anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) monoclonal antibody, NC0321, which can efficiently neutralize a range of SARS-CoV-2 variants, including alpha, beta, delta, and eta. Both prophylactic and therapeutic NC0321 treatments effectively protected mice from SARS-CoV-2 infection. Notably, we adopted viral vector-mediated delivery of NC0321 IgG1 as an attractive approach to prevent SARS-CoV-2 infection. The NC0321 IgG1 expression in the proximal airway, expressed by a single direct in-vivo intranasal (I.N.) administration of a self-inactivating and recombinant lentiviral vector (rSIV.F/HN-NC0321), can protect young, elderly, and immunocompromised mice against mouse-adapted SARS-CoV-2 surrogate challenge. Long-term monitoring indicated that rSIV.F/HN-NC0321 mediated robust IgG expression throughout the airway of young and SCID mice, importantly, no statistical difference in the NC0321 expression between young and SCID mice was observed. A single I.N. dose of rSIV.F/HN-NC0321 30 or 180 days prior to SARS-CoV-2 challenge significantly reduced lung SARS-CoV-2 titers in an Ad5-hACE2-transduced mouse model, reconfirming that this vectored immunoprophylaxis strategy could be useful, especially for those individuals who cannot gain effective immunity from existing vaccines, and could potentially prevent clinical sequelae.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anciano , Animales , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Inmunoglobulina G , Ratones , Ratones SCID , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus
20.
Mol Ther Methods Clin Dev ; 25: 382-391, 2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35573048

RESUMEN

We developed a novel lentiviral vector, pseudotyped with the F and HN proteins from Sendai virus (rSIV.F/HN), that produces long-lasting, high-efficiency transduction of the respiratory epithelium. Here we addressed whether this platform technology can secrete sufficient levels of a therapeutic protein into the lungs to ameliorate a fatal pulmonary disease as an example of its translational capability. Pulmonary alveolar proteinosis (PAP) results from alveolar granulocyte-macrophage colony-stimulating factor (GM-CSF) insufficiency, resulting in abnormal surfactant homeostasis and consequent ventilatory problems. Lungs of GM-CSF knockout mice were transduced with a single dose of rSIV.F/HN-expressing murine GM-CSF (mGM-CSF; 1e5-92e7 transduction units [TU]/mouse); mGM-CSF expression was dose related and persisted for at least 11 months. PAP disease biomarkers were rapidly and persistently corrected, but we noted a narrow toxicity/efficacy window. rSIV.F/HN may be a useful platform technology to deliver therapeutic proteins for lung diseases requiring long-lasting and stable expression of secreted proteins.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA