Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanotechnology ; 29(10): 105404, 2018 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-29384726

RESUMEN

We report a simple approach to fabricate hybrid solar cells (HSCs) based on a single-walled carbon nanotube (SWCNT) film and thin film hydrogenated amorphous silicon (a-Si:H). Randomly oriented high-quality SWCNTs with conductivity enhanced by means of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate are used as a window layer and a front electrode. A series of HSCs are fabricated in ambient conditions with varying SWCNT film thicknesses. The polymethylmethacrylate layer drop-casted on fabricated HSCs reduces the reflection fourfold and enhances the short-circuit J sc , open-circuit V oc , and efficiency by nearly 10%. A state-of-the-art J-V performance is shown for SWCNT/a-Si HSC with an open-circuit voltage of 900 mV and an efficiency of 3.4% under simulated one-sun AM 1.5 G direct illumination.

2.
Nanotechnology ; 29(32): 325501, 2018 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-29781448

RESUMEN

The integration of energy harvesting and energy storage in a single device both enables the conversion of ambient energy into electricity and provides a sustainable power source for various electronic devices and systems. On the other hand, mechanical flexibility, coupled with optical transparency of the energy storage devices, is required for many applications, ranging from self-powered rolled-up displays to wearable optoelectronic devices. We integrate a piezoelectric poly(vinylidene-trifluoroethylene) (P(VDF-TrFE)) film into a flexible supercapacitor system to harvest and store the energy. The asymmetric output characteristics of the piezoelectric P(VDF-TrFE) film under mechanical impacts results in effective charging of the supercapacitors. The integrated piezo-supercapacitor exhibits a specific capacitance of 50 F g-1. The open-circuit voltage of the flexible and transparent supercapacitor reached 500 mV within 20 s during the mechanical action. Our hybridized energy harvesting and storage device can be further extended to provide a sustainable power source for various types of sensors integrated into wearable units.

3.
Nanotechnology ; 27(48): 485709, 2016 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-27811402

RESUMEN

The possibility of ZnO deposition on the surface of single-walled carbon nanotubes (SWCNTs) with the help of an atomic layer deposition (ALD) technique was successfully demonstrated. The utilization of pristine SWCNTs as a support resulted in a non-uniform deposition of ZnO in the form of nanoparticles. To achieve uniform ZnO coating, the SWCNTs first needed to be functionalized by treating the samples in a controlled ozone atmosphere. The uniformly ZnO coated SWCNTs were used to fabricate UV sensing devices. An UV irradiation of the ZnO coated samples turned them from hydrophobic to hydrophilic behaviour. Furthermore, thin films of the ZnO coated SWCNTs allowed us switch p-type field effect transistors made of pristine SWCNTs to have ambipolar characteristics.

4.
ACS Appl Mater Interfaces ; 11(30): 27327-27334, 2019 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-31266298

RESUMEN

Soft, flexible, and stretchable electronic devices provide novel integration opportunities for wearable and implantable technologies. Despite the existing efforts to endow electronics with the capability of large deformation, the main technological challenge is still in the absence of suitable materials for the manufacturing of stretchable electronic circuits and devices with active (sensitive) and passive (stable) components. Here, we present a universal material, based on single-walled carbon nanotube (SWCNT) films deposited on a polydimethylsiloxane (PDMS) substrate, which can act as a material being both sensitive and insensitive to strain. The diverse performance of SWCNT/PDMS structures was achieved by two simple dry-transfer fabrication approaches: SWCNT film deposition onto the as-prepared PDMS and on the prestretched PDMS surface. The correlation between applied strain, microstructural evolution, and electro-optical properties is discussed on the basis of both experimental and computational results. The SWCNT/PDMS material with the mechanically tunable performance has a small relative resistance change from 0.05 to 0.07, while being stretched from 10 to 40% (stable electrode applications). A high sensitivity of 20.1 of the SWCNT/PDMS structures at a 100% strain was achieved (strain sensing applications). Our SWCNT/PDMS structures have superior transparency and conductivity compared to the ones reported previously, including the SWCNT/PDMS structures, obtained by wet processes.

5.
ACS Appl Mater Interfaces ; 10(33): 28069-28075, 2018 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-30052424

RESUMEN

Electrically conductive hydrogels (ECHs) are attracting much interest in the field of biomaterials science because of their unique properties. However, effective incorporation and dispersion of conductive materials in the matrices of polymeric hydrogels for improved conductivity remains a great challenge. Here, we demonstrate highly transparent, electrically conductive, stretchable tough hydrogels modified by single-walled carbon nanotubes (SWCNTs). Two different approaches for the fabrication of SWCNT/hydrogel structures are examined: a simple SWCNT film transfer onto the as-prepared hydrogel and the film deposition onto the pre-stretched hydrogel. Functionality of our method is confirmed by scanning electron microscopy along with optical and electrical measurements of our structures while subjecting them to different strains. Since the hydrogel-based structures are intrinsically soft, stretchable, wet, and sticky, they conform well to a human skin. We demonstrate applications of our material as skin-like passive electrodes and active finger-mounted joint motion sensors. Our technique shows promise to accelerate the development of biointegrated wearable electronics.


Asunto(s)
Nanotubos de Carbono , Electrodos , Humanos , Hidrogeles , Microscopía Electrónica de Rastreo , Polímeros
6.
Nanoscale ; 10(39): 18665-18671, 2018 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-30265270

RESUMEN

Although carbon nanotubes have already been demonstrated to be a promising material for bolometric photodetectors, enhancing sensitivity while maintaining the speed of operation remains a great challenge. Here, we present a holey carbon nanotube network, designed to improve the temperature coefficient of resistance for highly sensitive ultra-fast broadband bolometers. Treatment of carbon nanotube films with low-frequency oxygen plasma allows fine tuning of the electronic properties of the material. The temperature coefficient of resistance of our films is much greater than the reported values for pristine carbon nanotubes, up to -2.8% K-1 at liquid nitrogen temperature. The bolometer prototypes made from the treated films demonstrate high sensitivity over a wide IR range, a short response time, smooth spectral characteristics and a low noise level.

7.
Sci Rep ; 7(1): 17449, 2017 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-29234105

RESUMEN

We report high-performance, stable, low equivalent series resistance all-nanotube stretchable supercapacitor based on single-walled carbon nanotube film electrodes and a boron nitride nanotube separator. A layer of boron nitride nanotubes, fabricated by airbrushing from isopropanol dispersion, allows avoiding problem of high internal resistance and short-circuiting of supercapacitors. The device, fabricated in a two-electrode test cell configuration, demonstrates electrochemical double layer capacitance mechanism and retains 96% of its initial capacitance after 20 000 electrochemical charging/discharging cycles with the specific capacitance value of 82 F g-1 and low equivalent series resistance of 4.6 Ω. The stretchable supercapacitor prototype withstands at least 1000 cycles of 50% strain with a slight increase in the volumetric capacitance from 0.4 to 0.5 mF cm-3 and volumetric power density from 32 mW cm-3 to 40 mW cm-3 after stretching, which is higher than reported before. Moreover, a low resistance of 250 Ω for the as-fabricated stretchable prototype was obtained, which slightly decreased with the strain applied up to 200 Ω. Simple fabrication process of such devices can be easily extended making the all-nanotube stretchable supercapacitors, presented here, promising elements in future wearable devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA