Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; 95(12)2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-33762411

RESUMEN

Porcine hemagglutinating encephalomyelitis virus (PHEV) is a betacoronavirus that causes vomiting and wasting disease and/or encephalomyelitis in suckling pigs. This study characterized PHEV infection, pathogenesis, and immune response in cesarean-derived, colostrum-deprived (CDCD) neonatal pigs. Infected animals developed mild respiratory, enteric, and neurological clinical signs between 2 to 13 days postoronasal inoculation (dpi). PHEV did not produce viremia, but virus shedding was detected in nasal secretions (1 to 10 dpi) and feces (2 to 7 dpi) by reverse transcriptase quantitative PCR (RT-qPCR). Viral RNA was detected in all tissues except liver, but the detection rate and RT-qPCR threshold cycle (CT ) values decreased over time. The highest concentration of virus was detected in inoculated piglets necropsied at 5 dpi in turbinate and trachea, followed by tonsils, lungs, tracheobronchial lymph nodes, and stomach. The most representative microscopic lesions were gastritis lymphoplasmacytic, moderate, multifocal, with perivasculitis, and neuritis with ganglia degeneration. A moderate inflammatory response, characterized by increased levels of interferon alpha (IFN-α) in plasma (5 dpi) and infiltration of T lymphocytes and macrophages were also observed. Increased plasma levels of interleukin-8 (IL-8) were detected at 10 and 15 dpi, coinciding with the progressive resolution of the infection. Moreover, a robust antibody response was detected by 10 dpi. An ex vivo air-liquid CDCD-derived porcine respiratory cells culture (ALI-PRECs) system showed virus replication in ALI-PRECs and cytopathic changes and disruption of ciliated columnar epithelia, thereby confirming the tracheal epithelia as a primary site of infection for PHEV.IMPORTANCE Among the ∼46 virus species in the family Coronaviridae, many of which are important pathogens of humans and 6 of which are commonly found in pigs, porcine hemagglutinating encephalomyelitis remains one of the least researched. The present study provided a comprehensive characterization of the PHEV infection process and immune responses using CDCD neonatal pigs. Moreover, we used an ex vivo ALI-PRECs system resembling the epithelial lining of the tracheobronchial region of the porcine respiratory tract to demonstrate that the upper respiratory tract is a primary site of PHEV infection. This study provides a platform for further multidisciplinary studies of coronavirus infections.


Asunto(s)
Betacoronavirus 1/inmunología , Infecciones por Coronavirus/inmunología , Interferón-alfa/inmunología , Interleucina-8/inmunología , Enfermedades de los Porcinos/inmunología , Linfocitos T/inmunología , Animales , Línea Celular , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/veterinaria , Especificidad de Órganos/inmunología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Porcinos , Enfermedades de los Porcinos/patología , Linfocitos T/patología , Linfocitos T/virología
2.
J Gen Virol ; 102(1)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33206034

RESUMEN

Recently, a novel PCV species (PCV3) has been detected in cases associated with sow mortality, lesions consistent with porcine dermatitis and nephropathy syndrome, reproductive failure and multisystemic inflammation. The pathogenesis and clinical significance of PCV3 is still unclear. In this study, we investigated the immunopathogenesis of PCV3 in CD/CD pigs. Four treatment groups, PCV3 (n=6), PCV3-KLH (n=6), control (n=3) and control-KLH (n=3), were included with PCV3-positive tissue homogenate (gc=3.38×1012 ml-1 and gc=1.04×1011 ml-1), confirmed by quantitative PCR (qPCR) and next-generation sequencing. Clinical signs, viremia, viral shedding, systemic cytokines, humoral (IgG) and T-cellular response were evaluated for 42 days. At necropsy, tissues were collected for histological evaluation and PCV3 detection by qPCR and in situ hybridization. No significant clinical signs were observed through the study. Viremia was detected in both PCV3-inoculated groups from 3 days post-inoculation (p.i.) until the end of the study. Nasal shedding was detected from 3 to 28 days p.i. and faecal shedding was transient. PCV3 induced an early (7 days p.i.) and sustained (42 days p.i.) IgG response. No significant T-cell response was observed. Histological evaluation demonstrated lesions consistent with multisystemic inflammation and perivasculitis. All tissues evaluated were positive by qPCR and virus replication was confirmed by positive in situ hybridization. This study demonstrated the potential role of PCV3 in subclinical infection, producing a mild, multisystemic inflammatory response, prolonged viremia detectable for 42 days p.i., presence of IgG humoral response and viral shedding in nasal secretions. More research is required to understand and elucidate potential co-factors necessary in the manifestation and severity of clinical disease.


Asunto(s)
Infecciones por Circoviridae/veterinaria , Circovirus/patogenicidad , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/patología , Animales , Anticuerpos Antivirales/sangre , Infecciones por Circoviridae/inmunología , Infecciones por Circoviridae/patología , Infecciones por Circoviridae/virología , Circovirus/fisiología , Inmunoglobulina G/sangre , Inflamación , Nariz/virología , Porcinos , Enfermedades de los Porcinos/virología , Viremia/veterinaria , Viremia/virología , Replicación Viral , Esparcimiento de Virus
3.
J Clin Microbiol ; 58(12)2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-32967897

RESUMEN

Mycoplasma hyopneumoniae is an economically significant pathogen of swine. M. hyopneumoniae serum antibody detection via commercial enzyme-linked immunosorbent assays (ELISAs) is widely used for routine surveillance in commercial swine production systems. Samples from two studies were used to evaluate assay performance. In study 1, 6 commercial M. hyopneumoniae ELISAs were compared using serum samples from 8-week-old cesarean-derived, colostrum-deprived (CDCD) pigs allocated to the following 5 inoculation groups of 10 pigs each: (i) negative control, (ii) Mycoplasma flocculare (strain 27399), (iii) Mycoplasma hyorhinis (strain 38983), (iv) Mycoplasma hyosynoviae (strain 34428), and (v) M. hyopneumoniae (strain 232). Weekly serum and daily oral fluid samples were collected through 56 days postinoculation (dpi). The true status of pigs was established by PCR testing on oral fluids samples over the course of the observation period. Analysis of ELISA performance at various cutoffs found that the manufacturers' recommended cutoffs were diagnostically specific, i.e., produced no false positives, with the exceptions of 2 ELISAs. An analysis based on overall misclassification error rates found that 4 ELISAs performed similarly, although one assay produced more false positives. In study 2, the 3 best-performing ELISAs from study 1 were compared using serum samples generated under field conditions. Ten 8-week-old pigs were intratracheally inoculated with M. hyopneumoniae Matched serum and tracheal samples (to establish the true pig M. hyopneumoniae status) were collected at 7- to 14-day intervals through 98 dpi. Analyses of sensitivity and specificity showed similar performance among these 3 ELISAs. Overall, this study provides an assessment of the performance of current M. hyopneumoniae ELISAs and an understanding of their use in surveillance.


Asunto(s)
Mycoplasma hyopneumoniae , Neumonía Porcina por Mycoplasma , Enfermedades de los Porcinos , Animales , Anticuerpos Antibacterianos , Ensayo de Inmunoadsorción Enzimática , Mycoplasma , Neumonía Porcina por Mycoplasma/diagnóstico , Porcinos
4.
BMC Vet Res ; 12: 70, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-27044253

RESUMEN

BACKGROUND: At least two genetically different porcine epidemic diarrhea virus (PEDV) strains have been identified in the United States (U.S. PEDV prototype and S-INDEL-variant strains). The current serological assays offered at veterinary diagnostic laboratories for detection of PEDV-specific antibody are based on the U.S. PEDV prototype strain. The objectives of this study were: 1) isolate the U.S. PEDV S-INDEL-variant strain in cell culture; 2) generate antisera against the U.S. PEDV prototype and S-INDEL-variant strains by experimentally infecting weaned pigs; 3) determine if the various PEDV serological assays could detect antibodies against the U.S. PEDV S-INDEL-variant strain and vice versa. RESULTS: A U.S. PEDV S-INDEL-variant strain was isolated in cell culture in this study. Three groups of PEDV-negative, 3-week-old pigs (five pigs per group) were inoculated orally with a U.S. PEDV prototype isolate (previously isolated in our lab), an S-INDEL-variant isolate or virus-negative culture medium. Serum samples collected at 0, 7, 14, 21 and 28 days post inoculation were evaluated by the following PEDV serological assays: 1) indirect fluorescent antibody (IFA) assays using the prototype and S-INDEL-variant strains as indicator viruses; 2) virus neutralization (VN) tests against the prototype and S-INDEL-variant viruses; 3) PEDV prototype strain whole virus based ELISA; 4) PEDV prototype strain S1-based ELISA; and 5) PEDV S-INDEL-variant strain S1-based ELISA. The positive antisera against the prototype strain reacted to and neutralized both prototype and S-INDEL-variant viruses, and the positive antisera against the S-INDEL-variant strain also reacted to and neutralized both prototype and S-INDEL-variant viruses, as examined by IFA antibody assays and VN tests. Antibodies against the two PEDV strains could be detected by all three ELISAs although detection rates varied to some degree. CONCLUSIONS: These data indicate that the antibodies against U.S. PEDV prototype and S-INDEL-variant strains cross-reacted and cross-neutralized both strains in vitro. The current serological assays based on U.S. PEDV prototype strain can detect antibodies against both U.S. PEDV strains.


Asunto(s)
Anticuerpos Antivirales/metabolismo , Infecciones por Coronavirus/veterinaria , Virus de la Diarrea Epidémica Porcina/fisiología , Enfermedades de los Porcinos/diagnóstico , Animales , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/virología , Reacciones Cruzadas , Ensayo de Inmunoadsorción Enzimática/normas , Técnica del Anticuerpo Fluorescente Indirecta/normas , Pruebas de Neutralización/normas , Porcinos , Enfermedades de los Porcinos/virología , Estados Unidos
5.
Dis Aquat Organ ; 121(3): 249-256, 2016 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-27786163

RESUMEN

Erysipelothrix rhusiopathiae is the causative agent of erysipeloid in humans and of erysipelas in various animals, including bottlenose dolphins Tursiops truncatus, in which an infection has the potential to cause peracute septicemia and death. The purpose of this study was to evaluate the efficacy of using an off-label porcine (ER BAC PLUS®, Zoetis) E. rhusiopathiae bactrin in a bottlenose dolphin vaccination program by determining the anti-E. rhusiopathiae antibody levels in vaccinated dolphins over a 10 yr period. Serum samples (n = 88) were analyzed using a modified fluorescent microbead immunoassay from 54 dolphins, including 3 individuals with no history of vaccination and 51 dolphins with an average of 5 vaccinations, 3 of which had previously recovered from a natural E. rhusiopathiae infection. A mean 311-fold increase in the immunoglobulin G (IgG) antibody index was measured in a subsample of 10 dolphins 14 d after the first booster vaccination. Serum IgG antibody titers were influenced by number of vaccines received (r2 = 0.47, p < 0.05) but not by age, gender, history of natural infection, adverse vaccine reaction, vaccination interval or time since last vaccination. The commercial pig bacterin was deemed effective in generating humoral immunity against E. rhusiopathiae in dolphins. However, since the probability of an adverse reaction toward the vaccine was moderately correlated (p = 0.07, r2 = 0.1) with number of vaccines administered, more research is needed to determine the optimal vaccination interval.


Asunto(s)
Anticuerpos Antibacterianos/sangre , Vacunas Bacterianas/inmunología , Delfín Mular , Infecciones por Erysipelothrix/prevención & control , Erysipelothrix/inmunología , Inmunoglobulina G/sangre , Animales , Infecciones por Erysipelothrix/sangre , Infecciones por Erysipelothrix/microbiología , Femenino , Masculino
6.
Dis Aquat Organ ; 117(3): 237-43, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26758657

RESUMEN

A fluorescent microbead-based immunoassay (FMIA) for detection of anti-Erysipelothrix rhusiopathiae antibodies in pigs was adapted for use in cetaceans. The FMIA was validated and adjusted using serum samples from 10 vaccinated captive bottlenose dolphins Tursiops truncatus collected between 1 and 13 mo after immunization. The technique was then used to analyze specimens from 15 free-ranging cetaceans stranded alive on the Valencian Mediterranean coast between 2006 and 2014: 11 striped dolphins Stenella coeruleoalba, 3 Risso's dolphins Grampus griseus and 1 bottlenose dolphin Tursiops truncatus. One of these wild animals was confirmed to have died from E. rhusiopathiae septicemia, but no anti-E. rhusiopathiae antibodies were detected in its serum, pericardial fluid or milk samples. Another free-ranging individual, which lacked any signs or lesions that might be indicative of E. rhusiopathiae infection, showed high fluorescence intensity similar to that measured in captive dolphins at 6-13 mo after vaccination. These results suggest that this animal underwent an E. rhusiopathiae infection several months before stranding. The findings in the present study suggest that FMIA can be useful for detecting anti-E. rhusiopathiae antibodies in cetaceans, and its application to free-ranging animals is particularly interesting because of the great value of these specimens. Furthermore, the FMIA can be multiplexed to allow the determination of up to 100 analytes per sample in a single well, thereby reducing the cost, time and sample volume needed.


Asunto(s)
Anticuerpos Antibacterianos/sangre , Delfines , Infecciones por Erysipelothrix/sangre , Erysipelothrix/inmunología , Inmunoensayo/veterinaria , Animales , Vacunas Bacterianas/inmunología , Infecciones por Erysipelothrix/inmunología , Infecciones por Erysipelothrix/prevención & control , Inmunoensayo/métodos
7.
J Vet Diagn Invest ; 36(1): 78-85, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37919959

RESUMEN

Normalization, the process of controlling for normal variation in sampling and testing, can be achieved in real-time PCR assays by converting sample quantification cycles (Cqs) to "efficiency standardized Cqs" (ECqs). We calculated ECqs as E-ΔCq, where E is amplification efficiency and ΔCq is the difference between sample and reference standard Cqs. To apply this approach to a commercial porcine reproductive and respiratory syndrome virus (PRRSV) RT-qPCR assay, we created reference standards by rehydrating and then diluting (1 × 10-4) a PRRSV modified-live vaccine (PRRS MLV; Ingelvac) with serum or oral fluid (OF) to match the sample matrix to be tested. Sample ECqs were calculated using the mean E and reference standard Cq calculated from the 4 reference standards on each plate. Serum (n = 132) and OF (n = 130) samples were collected from each of 12 pigs vaccinated with a PRRSV MLV from -7 to 42 d post-vaccination, tested, and sample Cqs converted to ECqs. Mean plate Es were 1.75-2.6 for serum and 1.7-2.3 for OF. Mean plate reference standard Cqs were 29.1-31.3 for serum and 29.2-31.5 for OFs. Receiver operating characteristic analysis calculated the area under the curve for serum and OF sample ECqs as 0.999 (95% CI: 0.997, 1.000) and 0.947 (0.890, 1.000), respectively. For serum, diagnostic sensitivity and specificity of the commercial PRRSV RT-qPCR assay were estimated as 97.9% and 100% at an ECq cutoff ≥ 0.20, and for OF, 82.6% and 100%, respectively, at an ECq cutoff ≥ 0.45.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Enfermedades de los Porcinos , Vacunas Virales , Porcinos , Animales , Síndrome Respiratorio y de la Reproducción Porcina/diagnóstico , Síndrome Respiratorio y de la Reproducción Porcina/prevención & control , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Anticuerpos Antivirales , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Vacunas Atenuadas , Enfermedades de los Porcinos/diagnóstico
8.
Viruses ; 16(6)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38932231

RESUMEN

Porcine hemagglutinating encephalomyelitis virus (PHEV) replicates in the upper respiratory tract and tonsils of pigs. Using an air-liquid interface porcine respiratory epithelial cells (ALI-PRECs) culture system, we demonstrated that PHEV disrupts respiratory epithelia homeostasis by impairing ciliary function and inducing antiviral, pro-inflammatory cytokine, and chemokine responses. This study explores the mechanisms driving early innate immune responses during PHEV infection through host transcriptome analysis. Total RNA was collected from ALI-PRECs at 24, 36, and 48 h post inoculation (hpi). RNA-seq analysis was performed using an Illumina Hiseq 600 to generate 100 bp paired-end reads. Differential gene expression was analyzed using DeSeq2. PHEV replicated actively in ALI-PRECs, causing cytopathic changes and progressive mucociliary disruption. Transcriptome analysis revealed downregulation of cilia-associated genes such as CILK1, DNAH11, LRRC-23, -49, and -51, and acidic sialomucin CD164L2. PHEV also activated antiviral signaling pathways, significantly increasing the expression of interferon-stimulated genes (RSAD2, MX1, IFIT, and ISG15) and chemokine genes (CCL5 and CXCL10), highlighting inflammatory regulation. This study contributes to elucidating the molecular mechanisms of the innate immune response to PHEV infection of the airway epithelium, emphasizing the critical roles of the mucociliary, interferon, and chemokine responses.


Asunto(s)
Betacoronavirus 1 , Células Epiteliales , Perfilación de la Expresión Génica , Interferones , Animales , Porcinos , Células Epiteliales/virología , Células Epiteliales/inmunología , Interferones/genética , Interferones/metabolismo , Interferones/inmunología , Betacoronavirus 1/inmunología , Betacoronavirus 1/genética , Inmunidad Innata , Replicación Viral , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/veterinaria , Citocinas/metabolismo , Citocinas/genética , Citocinas/inmunología , Transcriptoma , Mucosa Respiratoria/virología , Mucosa Respiratoria/inmunología , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/genética , Células Cultivadas , Deltacoronavirus
9.
Microbiol Spectr ; 12(2): e0252423, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38189329

RESUMEN

The potential infectivity of severe acute respiratory syndrome associated coronavirus-2 (SARS-CoV-2) in animals raises a public health and economic concern, particularly the high susceptibility of white-tailed deer (WTD) to SARS-CoV-2. The disparity in the disease outcome between humans and WTD is very intriguing, as the latter are often asymptomatic, subclinical carriers of SARS-CoV-2. To date, no studies have evaluated the innate immune factors responsible for the contrasting SARS-CoV-2-associated disease outcomes in these mammalian species. A comparative transcriptomic analysis in primary respiratory epithelial cells of human (HRECs) and WTD (Deer-RECs) infected with the SARS-CoV-2 WA1/2020 strain was assessed throughout 48 h post inoculation (hpi). Both HRECs and Deer-RECs were susceptible to virus infection, with significantly (P < 0.001) lower virus replication in Deer-RECs. The number of differentially expressed genes (DEG) gradually increased in Deer-RECs but decreased in HRECs throughout the infection. The ingenuity pathway analysis of DEGs further identified that genes commonly altered during SARS-CoV-2 infection mainly belong to cytokine and chemokine response pathways mediated via interleukin-17 (IL-17) and nuclear factor-κB (NF-κB) signaling pathways. Inhibition of the NF-κB signaling in the Deer-RECs pathway was predicted as early as 6 hpi. The findings from this study could explain the lack of clinical signs reported in WTD in response to SARS-CoV-2 infection as opposed to the severe clinical outcomes reported in humans.IMPORTANCEThis study demonstrated that human and white-tailed deer primary respiratory epithelial cells are susceptible to the SARS-CoV-2 WA1/2020 strain infection. However, the comparative transcriptomic analysis revealed that deer cells could limit viral replication without causing hypercytokinemia by downregulating IL-17 and NF-κB signaling pathways. Identifying differentially expressed genes in human and deer cells that modulate key innate immunity pathways during the early infection will lead to developing targeted therapies toward preventing or mitigating the "cytokine storm" often associated with severe cases of coronavirus disease 19 (COVID-19). Moreover, results from this study will aid in identifying novel prognostic biomarkers in predicting SARS-CoV-2 adaption and transmission in deer and associated cervids.


Asunto(s)
COVID-19 , Ciervos , Animales , Humanos , SARS-CoV-2/metabolismo , Interleucina-17 , FN-kappa B/metabolismo , Citocinas/metabolismo , Células Epiteliales , Síndrome de Liberación de Citoquinas
10.
Vet Microbiol ; 290: 109999, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38280306

RESUMEN

Mycoplasma hyorhinis (Mhr) and M. hyosynoviae (Mhs) are commensal organisms of the upper respiratory tract and tonsils but may also cause arthritis in pigs. In this study, 8-week-old cesarean-derived colostrum-deprived (CDCD) pigs (n = 30; 3 groups, 10 pigs per group, 2 pigs per pen) were inoculated with Mhr, Mhs, or mock-inoculated with culture medium and then pen-based oral fluids were collected at different time points over the 56 days of the experimental study. Oral fluids tested by Mhr and Mhs quantitative real-time PCRs revealed Mhr DNA between day post inoculation (DPI) 5-52 and Mhs DNA between DPI 5-15. Oral fluids were likewise tested for antibody using isotype-specific (IgG, IgA, IgM) indirect ELISAs based on a recombinant chimeric polypeptide of variable lipoproteins (A-G) for Mhr and Tween 20-extracted surface proteins for Mhs. Mhr IgA was detected at DPI 7 and, relative to the control group, significant (p < 0.05) antibody responses were detected in the Mhr group between DPI 12-15 for IgM and DPI 36-56 for both IgA and IgG. In the Mhs group, IgM was detected at DPI 10 and significant (p < 0.05) IgG and IgA responses were detected at DPI 32-56 and DPI 44-56, respectively. This study demonstrated that oral fluid could serve as an effective and convenient antemortem sample for monitoring Mhr and Mhs in swine populations.


Asunto(s)
Infecciones por Mycoplasma , Mycoplasma hyorhinis , Enfermedades de los Porcinos , Porcinos , Animales , Mycoplasma hyorhinis/genética , Enfermedades de los Porcinos/microbiología , Infecciones por Mycoplasma/veterinaria , Infecciones por Mycoplasma/microbiología , Formación de Anticuerpos , Derrame de Bacterias , Inmunoglobulina M , Inmunoglobulina A , ADN , Inmunoglobulina G
11.
Animals (Basel) ; 14(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38473151

RESUMEN

Laboratory methods for detecting specific pathogens in oral fluids are widely reported, but there is little research on the oral fluid sampling process itself. In this study, a fluorescent tracer (diluted red food coloring) was used to test the transfer of a target directly from pigs or indirectly from the environment to pen-based oral fluid samples. Pens of ~30, ~60, and ~125 14-week-old pigs (32 pens/size) on commercial swine farms received one of two treatments: (1) pig exposure, i.e., ~3.5 mL of tracer solution sprayed into the mouth of 10% of the pigs in the pen; (2) environmental exposure, i.e., 20 mL of tracer solution was poured on the floor in the center of the pen. Oral fluids collected one day prior to treatment (baseline fluorescence control) and immediately after treatment were tested for fluorescence. Data were evaluated by receiver operating characteristic (ROC) analysis, with Youden's J statistic used to set a threshold. Pretreatment oral fluid samples with fluorescence responses above the ROC threshold were removed from further analysis (7 of 96 samples). Based on the ROC analyses, oral fluid samples from 78 of 89 pens (87.6%), contained red food coloring, including 43 of 47 (91.5%) pens receiving pig exposure and 35 of 42 (83.3%) pens receiving environmental exposure. Thus, oral fluid samples contain both pig-derived and environmental targets. This methodology provides a safe and quantifiable method to evaluate oral fluid sampling vis-à-vis pen behavior, pen size, sampling protocol, and target distribution in the pen.

12.
Vet Immunol Immunopathol ; 272: 110768, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703559

RESUMEN

The Mycoplasma hyorhinis (Mhr) variable lipoprotein (Vlp) family, comprising Vlps A, B, C, D, E, F, and G, are highly variable in expression, size, and cytoadhesion capabilities across Mhr strains. The 'Vlp system' plays a crucial role in cytoadhesion, immune evasion, and in eliciting a host immunologic response. This pilot study described the development of Vlp peptide-based ELISAs to evaluate the antigenic reactivity of individual Vlps against Mhr antisera collected throughout a longitudinal study focused on Mhr strain 38983, reproducing Mhr-associated disease under experimental conditions. Specifically, serum samples were collected at day post-inoculation 0, 7, 10, 14, 17, 21, 24, 28, 35, 42, 49, and 56 from Mhr- and mock (Friis medium)-inoculated cesarean-derived, colostrum-deprived pigs. Significant Mhr-specific IgG responses were detected at specific time points throughout the infection, with some variations for each Vlp. Overall, individual Vlp ELISAs showed consistently high accuracy rates, except for VlpD, which would likely be associated with its expression levels or the anti-Vlp humoral immune response specific to the Mhr strain used in this study. This study provides the basis and tools for a more refined understanding of these Vlp- and Mhr strain-specific variations, which is foundational in understanding the host immune response to Mhr.


Asunto(s)
Lipoproteínas , Infecciones por Mycoplasma , Mycoplasma hyorhinis , Animales , Lipoproteínas/inmunología , Mycoplasma hyorhinis/inmunología , Infecciones por Mycoplasma/inmunología , Infecciones por Mycoplasma/veterinaria , Porcinos/inmunología , Ensayo de Inmunoadsorción Enzimática/veterinaria , Proyectos Piloto , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunología , Antígenos Bacterianos/inmunología , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/microbiología , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Femenino , Proteínas Bacterianas/inmunología , Estudios Longitudinales
13.
J Gen Virol ; 94(Pt 3): 570-582, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23223616

RESUMEN

Many astrovirus (AstV) species are associated with enteric disease, although extraintestinal manifestations in mammalian and avian hosts have also been described. In this study, the prevalence rates of porcine AstV types 1-5 (PAstV1-PAstV5) were investigated using faecal samples from 509 pigs of which 488 (95.9%) came from farms with a history of diarrhoea. All of the five known PAstV types were found to circulate in pigs in the USA, and co-infection of a single pig with two or more PAstV types was frequently observed. A high overall prevalence of 64.0% (326/509) of PAstV RNA-positive samples was detected, with 97.2% (317/326) of the PAstV RNA-positive pigs infected with PAstV4. Further genomic sequencing and characterization of the selected isolates revealed low sequence identities (49.2-89.0%) with known PAstV strains, indicating novel types or genotypes of PAstV2, PAstV4 and PAstV5. Some new features of the genomes of the PAstVs were also discovered. The first complete genome of a PAstV3 isolate was obtained and showed identities of 50.5-55.3% with mink AstV and the novel human AstVs compared with 38.4-42.7% with other PAstV types. Phylogenetic analysis revealed that PAstV1, PAstV2 and PAstV3 were more closely related to AstVs from humans and other animals than to each other, indicating past cross-species transmission and the zoonotic potential of these PAstVs.


Asunto(s)
Infecciones por Astroviridae/veterinaria , Astroviridae/clasificación , Enfermedades de los Porcinos/virología , Envejecimiento , Animales , Infecciones por Astroviridae/virología , Heces/virología , Genoma Viral , Genotipo , Datos de Secuencia Molecular , Filogenia , Prevalencia , ARN Viral/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/veterinaria , Especificidad de la Especie , Porcinos , Estados Unidos/epidemiología , Carga Viral
14.
Sci Rep ; 13(1): 2972, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36806288

RESUMEN

Hand vaccinating is time consuming and inefficient. Oral vaccines delivered by drenching are less likely to be used due to a lack of labor on farms. Current environmental enrichment (EE) technologies do not allow pigs to express certain natural behaviors such as rooting and getting a reward. We developed a sprayer so that domestic pigs can self-apply any liquid. By adding an attractant (pig maternal pheromone), the use of EE devices by individual pigs can be increased. In this study, we used a Salmonella oral vaccine to evaluate efficacy of three delivery methods: (1) Control, no vaccine, (2) hand drenching as labeled, and (3) self-administration by this EE rooting device. All pigs sprayed themselves within 80 min of exposure to the EE device. While control pigs had little or no Salmonella serum and oral fluid IgG or IgA, hand-drenched and self-vaccinated pigs built similar levels of both serum and oral fluid IgA and IgG. We conclude we were able to significantly reduce human labor needed and achieved 100% efficacy in eliciting a serologic response when pigs self-administered a Salmonella vaccine. This technology could benefit commercial pig production while providing an enriched behavioral environment. Self-vaccination could also assist in control or immunization of feral swine and improve domestic pig health and food safety.


Asunto(s)
Vacunas contra la Salmonella , Sus scrofa , Humanos , Porcinos , Animales , Autoadministración , Inmunoglobulina A , Inmunoglobulina G
15.
J Vet Diagn Invest ; 35(5): 521-527, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37337714

RESUMEN

Based on publications reporting improvements in real-time PCR (rtPCR) performance, we compared protocols based on heat treatment or dilution followed by direct rtPCR to standard extraction and amplification methods for the detection of porcine reproductive and respiratory syndrome virus (PRRSV), influenza A virus (IAV), porcine epidemic diarrhea virus (PEDV), or Mycoplasma hyopneumoniae (MHP) in swine oral fluids (OFs). In part A, we subjected aliquots of positive OF samples to 1 of 4 protocols: protocol 1: heat (95°C × 30 min) followed by direct rtPCR; protocol 2: heat and cool (25°C × 20 min) followed by direct rtPCR; protocol 3: heat, cool, extraction, and rtPCR; protocol 4 (control): extraction and then rtPCR. In part B, positive OF samples were split into 3, diluted (D1 = 1:2 with Tris-borate-EDTA (TBE); D2 = 1:2 with negative OF; D3 = not diluted), and then tested by rtPCR using the best-performing protocol from part A (protocol 4). In part A, with occasional exceptions, heat treatment resulted in marked reduction in the detection of target and internal sample control (ISC) nucleic acids. In part B, sample dilution with TBE or OF produced no improvement in the detection of targets and ISCs. Thus, standard extraction and amplification methods provided superior detection of PRRSV, IAV, PEDV, and MHP nucleic acids in OFs.


Asunto(s)
Virus de la Influenza A , Síndrome Respiratorio y de la Reproducción Porcina , Virus de la Diarrea Epidémica Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Enfermedades de los Porcinos , Porcinos , Animales , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Enfermedades de los Porcinos/diagnóstico , Síndrome Respiratorio y de la Reproducción Porcina/diagnóstico
16.
Pathogens ; 12(3)2023 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-36986367

RESUMEN

Streptococcus zooepidemicus is an emerging zoonotic pathogen involved in septicemic infections in humans and livestock. Raising guinea pigs in South America is an important economic activity compared to raising them as pets in other countries. An outbreak of severe lymphadenitis was reported in guinea pigs from farms in the Andean region. S. zooepidemicus was isolated from multiple cervical and mandibular abscesses. Isolate was characterized by multilocus sequence typing and phylogenetic analysis. This is the first molecular characterization of a highly pathogenic strain, showing major important virulence factors such as the M-like protein genes szP and mlpZ, the fimbrial subunit protein gene fszF, and the protective antigen-like protein gene spaZ. Additionally, this guinea pig strain was phylogenetically related to equines but distant from zoonotic and pig isolates reported in other countries.

17.
Virus Res ; 327: 199078, 2023 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-36813239

RESUMEN

Human coronavirus NL63 (HCoV-NL63) is spread globally, causing upper and lower respiratory tract infections mainly in young children. HCoV-NL63 shares a host receptor (ACE2) with severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2 but, unlike them, HCoV-NL63 primarily develops into self-limiting mild to moderate respiratory disease. Although with different efficiency, both HCoV-NL63 and SARS-like CoVs infect ciliated respiratory cells using ACE2 as receptor for binding and cell entry. Working with SARS-like CoVs require access to BSL-3 facilities, while HCoV-NL63 research can be performed at BSL-2 laboratories. Thus, HCoV-NL63 could be used as a safer surrogate for comparative studies on receptor dynamics, infectivity and virus replication, disease mechanism, and potential therapeutic interventions against SARS-like CoVs. This prompted us to review the current knowledge on the infection mechanism and replication of HCoV-NL63. Specifically, after a brief overview on the taxonomy, genomic organization and virus structure, this review compiles the current HCoV-NL63-related research in virus entry and replication mechanism, including virus attachment, endocytosis, genome translation, and replication and transcription. Furthermore, we reviewed cumulative knowledge on the susceptibility of different cells to HCoV-NL63 infection in vitro, which is essential for successful virus isolation and propagation, and contribute to address different scientific questions from basic science to the development and assessment of diagnostic tools, and antiviral therapies. Finally, we discussed different antiviral strategies that have been explored to suppress replication of HCoV-NL63, and other related human coronaviruses, by either targeting the virus or enhancing host antiviral mechanisms.


Asunto(s)
COVID-19 , Coronavirus Humano NL63 , Niño , Humanos , Preescolar , Enzima Convertidora de Angiotensina 2 , SARS-CoV-2 , Antivirales
18.
Vet Sci ; 10(6)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37368767

RESUMEN

Endogenous reference genes are used in gene-expression studies to "normalize" the results and, increasingly, as internal sample controls (ISC) in diagnostic quantitative polymerase chain reaction (qPCR). Three studies were conducted to evaluate the performance of a porcine-specific ISC in a commercial porcine reproductive and respiratory syndrome virus (PRRSV) reverse transcription-qPCR. Study 1 evaluated the species specificity of the ISC by testing serum from seven non-porcine domestic species (n = 34). In Study 2, the constancy of ISC detection over time (≥42 days) was assessed in oral fluid (n = 130), serum (n = 215), and feces (n = 132) collected from individual pigs of known PRRSV status. In Study 3, serum (n = 150), oral fluid (n = 150), and fecal samples (n = 75 feces, 75 fecal swabs) from commercial herds were used to establish ISC reference limits. Study 1 showed that the ISC was porcine-specific, i.e., all samples from non-porcine species were ISC negative (n = 34). In Study 2, the ISC was detected in all oral fluid, serum, and fecal samples, but differed in concentration between specimens (p < 0.05; mixed-effects regression model). The results of Study 3 were used to establish ISC reference limits for the 5th, 2.5th and 1.25th percentiles. Overall, the ISC response was consistent to the point that failure in detection is sufficient justification for re-testing and/or re-sampling.

19.
Viruses ; 15(3)2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36992445

RESUMEN

Human coronavirus (HCoV)-NL63 is an important contributor to upper and lower respiratory tract infections, mainly in children, while severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of COVID-19, can cause lower respiratory tract infections, and more severe, respiratory and systemic disease, which leads to fatal consequences in many cases. Using microscopy, immunohistochemistry (IHC), virus-binding assay, reverse transcriptase qPCR (RT-qPCR) assay, and flow cytometry, we compared the characteristics of the susceptibility, replication dynamics, and morphogenesis of HCoV-NL63 and SARS-CoV-2 in monolayer cultures of primary human respiratory epithelial cells (HRECs). Less than 10% HRECs expressed ACE2, and SARS-CoV-2 seemed much more efficient than HCoV-NL63 at infecting the very small proportion of HRECs expressing the ACE2 receptors. Furthermore, SARS-CoV-2 replicated more efficiently than HCoV-NL63 in HREC, which correlates with the cumulative evidence of the differences in their transmissibility.


Asunto(s)
Coronavirus Humano NL63 , Células Epiteliales , SARS-CoV-2 , Humanos , Enzima Convertidora de Angiotensina 2 , Línea Celular , Coronavirus Humano NL63/patogenicidad , COVID-19 , Células Epiteliales/virología , Infecciones del Sistema Respiratorio , SARS-CoV-2/patogenicidad
20.
Vet Sci ; 10(8)2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37624304

RESUMEN

Porcine circovirus 3 (PCV3) is an emerging virus first discovered in the United States in 2015, and since then, PCV3 has been found in many regions of the world, including America, Asia, and Europe. Although several PCV3 investigations have been carried out, there is a lack of knowledge regarding the pathogenicity of PCV3, mostly due to the limited number of PCV3 isolates that are readily available. In this study, PCV3-DB-1 was isolated in PK-15 cells and characterized in vitro. Electron microscopy revealed the presence of PCV-like particles, and in situ hybridization RNA analysis demonstrated the replication of PCV3 in PK-15 cell culture. Based on phylogenetic analysis of PCV3 isolates from the Heilongjiang province of China, PCV3-DB-1 with 24 alanine and 27 lysine in the Cap protein was originally isolated and determined to belong to the clade PCV3a.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA