Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Avian Pathol ; 53(4): 303-311, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38411905

RESUMEN

Monitoring Marek's disease (MD) vaccination is routinely done by evaluating the load of MD vaccine in the feather pulp (FP) between 7 and 10 days of age. However, attempts in our laboratory to detect a novel CVI-LTR vaccine in the FP samples from commercial flocks failed. The objective of this study was to evaluate the most suitable tissue and age to monitor CVI-LTR vaccination. We used two different commercial CVI988 vaccines as controls. One hundred and sixty 1-day-old commercial brown layers were vaccinated with either CVI-LTR, CVI988-A, CVI988-B or remained unvaccinated. Samples of the spleen, thymus, and bursa were collected at 3, 4, 5, and 6 days of age and samples of FP were collected at 7 and 21 days for DNA isolation. Our results showed that CVI-LTR replicated earlier than CVI988 vaccines in the lymphoid organs but was not detected in the FP at either 7 or at 21 days of age. We also confirmed that either the spleen or thymus collected at 4-6 days was a suitable sample to monitor CVI-LTR vaccination in commercial flocks. Finally, we evaluated the load of oncogenic MDV DNA in five commercial flocks that were vaccinated with either CVI-LTR + rHVT or CVI988-A + rHVT. The load of oncogenic MDV DNA was evaluated at 21 days in the FP in 20 chickens per group. Our results demonstrated that CVI-LTR was more successful in reducing oncogenic MDV DNA at 21 days of age than the CVI988-A strain.RESEARCH HIGHLIGHTSCVI-LTR replicates in the thymus and spleen earlier than CVI988.CVI-LTR replicates in lymphoid organs but it cannot be detected in feather pulp.CVI-LTR reduced the load of oncogenic MDV DNA more efficiently than CVI988.


Asunto(s)
Pollos , Plumas , Vacunas contra la Enfermedad de Marek , Enfermedad de Marek , Bazo , Timo , Animales , Pollos/virología , Enfermedad de Marek/prevención & control , Enfermedad de Marek/virología , Vacunas contra la Enfermedad de Marek/inmunología , Bazo/virología , Plumas/virología , Timo/virología , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/prevención & control , Secuencias Repetidas Terminales , Femenino , Vacunación/veterinaria , Bolsa de Fabricio/virología , Virus de la Reticuloendoteliosis/genética , Herpesvirus Gallináceo 2/genética , Replicación Viral , ADN Viral/genética
2.
J Dairy Sci ; 106(9): 6515-6538, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37268566

RESUMEN

Selection of competent recipients before embryo transfer (ET) is indispensable for improving pregnancy and birth rates in cattle. However, pregnancy prediction can fail when the competence of the embryo is ignored. We hypothesized that the pregnancy potential of biomarkers could improve with information on embryonic competence. In vitro-produced embryos cultured singly for 24 h (from d 6 to 7) were transferred to d 7 synchronized recipients as fresh or after freezing and thawing. Recipient blood was collected on d 0 (estrus; n = 108) and d 7 (4-6 h before ET; n = 107) and plasma was analyzed by nuclear magnetic resonance (1H+NMR). Spent embryo culture medium (CM) was collected and analyzed by ultra-high-performance liquid chromatography tandem mass spectrometry in a subset of n = 70 samples. Concentrations of metabolites quantified in plasma (n = 35) were statistically analyzed as a function of pregnancy diagnosed on d 40, d 62 and birth. Univariate analysis with plasma metabolites consisted of a block study with controllable fixed factors (i.e., embryo cryopreservation, recipient breed, and day of blood collection; Wilcoxon test and t-test). Metabolite concentrations in recipients and embryos were independently analyzed by iterations that reclassified embryos or recipients using the support vector machine. Iterations identified some competent embryos, but mostly competent recipients that had a pregnancy incompetent partner embryo. Misclassified recipients that could be classified as competent were reanalyzed in a new iteration to improve the predictive model. After subsequent iterations, the predictive potential of recipient biomarkers was recalculated. On d 0, creatine, acetone and l-phenylalanine were the most relevant biomarkers at d 40, d 62, and birth, and on d 7, l-glutamine, l-lysine, and ornithine. Creatine was the most representative biomarker within blocks (n = 20), with a uniform distribution over pregnancy endpoints and type of embryos. Biomarkers showed higher abundance on d 7 than d 0, were more predictive for d 40 and d 62 than at birth, and the pregnancy predictive ability was lower with frozen-thawed (F-T) embryos. Six metabolic pathways differed between d 40 pregnant recipients for fresh and F-T embryos. Within F-T embryos, more recipients were misclassified, probably due to pregnancy losses, but were accurately identified when combined with embryonic metabolite signals. After recalculation, 12 biomarkers increased receiver operator characteristic-area under the curve (>0.65) at birth, highlighting creatine (receiver operator characteristic-area under the curve = 0.851), and 5 new biomarkers were identified. Combining metabolic information of recipient and embryos improves the confidence and accuracy of single biomarkers.


Asunto(s)
Tasa de Natalidad , Creatina , Embarazo , Femenino , Bovinos , Animales , Transferencia de Embrión/veterinaria , Criopreservación/veterinaria , Congelación
3.
Metabolomics ; 18(8): 53, 2022 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-35842860

RESUMEN

INTRODUCTION: Different gene expression between male and female bovine embryos leads to metabolic differences. OBJECTIVE: We used UHPLC-MS/MS to identify sex metabolite biomarkers in embryo culture medium (CM). METHODS: Embryos were produced in vitro under highly variable conditions, i.e., fertilized with 7 bulls, two breeds, and cultured with BSA or BSA + serum until Day-6. On Day-6, embryos were cultured individually for 24 h. CM of Day-7 embryos (86 female and 81 male) was collected, and Day-6 and Day-7 embryonic stages recorded. RESULTS: A study by sample subsets with fixed factors (culture, bull breed, and Day-6 and Day-7 stages) tentatively identified 31 differentially accumulated metabolites through 182 subsets. Day-6 and Day-7 stage together affected 13 and 11 metabolites respectively, while 19 metabolites were affected by one or another stage and/or day. Culture supplements and individual bull changed 19 and 15 metabolites, respectively. Single bull exerted the highest influence (20 metabolites with the significantly highest p values). Lipid (93 subsets; 11 metabolites) and amino acid (55 subsets; 13 metabolites) were the most relevant classes for sex identification. CONCLUSIONS: Single biomarker led to inefficient sex diagnosis, while metabolite combinations accurately identified sex. Our study is a first in non-invasive sex identification in cattle by overcoming factors that induce metabolic variation.


Asunto(s)
Blastocisto , Metabolómica , Animales , Biomarcadores/metabolismo , Bovinos , Cromatografía Líquida de Alta Presión , Embrión de Mamíferos/metabolismo , Femenino , Masculino , Espectrometría de Masas en Tándem
4.
Neuropediatrics ; 53(5): 376-380, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35512844

RESUMEN

Mechanical thrombectomy (MT) in pediatric stroke is supported by studies in adults, but there is controversy regarding younger patients. The main growth of intracranial vessels occurs up to 2 years when there can be more difficulties in MT.Description of the MT performed in a 2-month-old patient-the youngest infant published to date. We also review the literature on MT for stroke in infants.A 2-month-old patient presented with an awakening stroke secondary to an occlusion of the M1 segment of the left middle cerebral artery. A successful MT was performed with an aspiration device without clinically significant complications. An etiological study was completed, and neuroimaging showed focal cerebral arteriopathy. The 3-month outcome was excellent: the pediatric modified Rankin score was 0.Including this case, MT for acute stroke has been reported in only 10 infants. MT was successful in 90%, mostly using adult conventional stent retrievers. There were complications only in patients with mechanical circulatory support (MCS) devices; three patients died due to hemorrhagic transformation after MT and one patient died due to recurrent ischemic stroke.MT seems effective and safe in infants similarly to other pediatric ages. In children under 2 years of age, the presence of comorbidities requiring MCS devices is the main factor underlying poor prognosis.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular , Adulto , Isquemia Encefálica/diagnóstico por imagen , Isquemia Encefálica/cirugía , Niño , Humanos , Lactante , Neuroimagen , Estudios Retrospectivos , Stents , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/etiología , Accidente Cerebrovascular/cirugía , Trombectomía/métodos , Resultado del Tratamiento
5.
J Gen Virol ; 102(2)2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33236979

RESUMEN

Marek's disease virus (MDV) is a highly cell-associated oncogenic alphaherpesvirus that causes T cell lymphoma in chickens. MDV-encoded Meq and vIL8 proteins play important roles in transformation and early cytolytic infection, respectively. Previous studies identified a spliced transcript, meq-vIL8, formed by alternative splicing of meq and vIL8 genes in MDV lymphoblastoid tumour cells. To determine the role of Meq-vIL8 in MDV pathogenesis, we generated a recombinant MDV (MDV-meqΔSD) by mutating the splice donor site in the meq gene to abrogate the expression of Meq-vIL8. As expected, our results show that MDV-meqΔSD virus grows similarly to the parental and revertant viruses in cell culture, suggesting that Meq-vIL8 is dispensable for MDV growth in vitro. We further characterized the pathogenic properties of MDV-meqΔSD virus in chickens. Our results show that lack of Meq-vIL8 did not affect virus replication during the early cytolytic phase, as determined by immunohistochemistry analysis and/or viral genome copy number, but significantly enhanced viral DNA load in the late phase of infection in the spleen and brain of infected chickens. In addition, we observed that abrogation of Meq-vIL8 expression reduced the mean death time and increased the prevalence of persistent neurological disease, common features of highly virulent strains of MDV, in inoculated chickens. In conclusion, our study shows that Meq-vIL8 is an important virulence factor of MDV.


Asunto(s)
Herpesvirus Gallináceo 2/genética , Herpesvirus Gallináceo 2/metabolismo , Proteínas Oncogénicas Virales/genética , Proteínas Oncogénicas Virales/metabolismo , Animales , Células Cultivadas , Embrión de Pollo , ADN Viral/genética , Técnica del Anticuerpo Fluorescente Indirecta , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transfección , Factores de Virulencia , Replicación Viral
6.
J Gen Virol ; 99(7): 927-936, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29767614

RESUMEN

Marek's disease virus (MDV) is a herpesvirus that induces lymphoma and a variety of non-neoplastic syndromes in chickens. Furthermore, very virulent plus (vv+) MDVs induce a form of immunosuppression (late-MDV-IS) that might involve both neoplastic and non-neoplastic mechanisms. The objective of this study was to evaluate whether the attenuation of MDV-induced tumours and late-MDV-IS occurs simultaneously or can be dissociated. The immunosuppressive ability of three viruses derived from vv+ MDV strain 686 (wild-type 686, the somewhat attenuated molecular clone 686-BAC, and the nononcogenic molecular clone lacking the two copies of the oncogene meq 686-BACΔMEQ) was evaluated. Late-MDV-IS was evaluated indirectly by assessing the negative effect of MDV strains on the protection conferred by infectious laryngotracheitis (ILT) vaccines. Our results showed that the ability to induce late-MDV-IS was attenuated before the ability to induce tumours. Strain 686 induced both tumours and late-MDV-IS, 686-BAC induced tumours but did not induce late-MDV-IS and 686-BACΔMEQ did not induce either tumours or late-MDV-IS. Further comparison of strains 686 and 686-BAC revealed that strain 686 reduced the humoral immune responses to ILTV (1132 vs 2167) more severely, showed higher levels of meq transcripts (2.1E+09 vs 4.98E+8) and higher expression of MDV microRNAs (mdv1-miR-M4-5p and mdv1-miR-M2-3p) in the spleen, and further reduced the percentage of CD45+-MHC-I+splenocytes (13 vs32 %) compared to molecular clone 686-BAC. This study suggests that the immunosuppressive ability of MDV might follow a continuous spectrum and only the most virulent MDVs can overcome a certain threshold level and induce clinical MDV-IS in the ILT model.


Asunto(s)
Carcinogénesis/inmunología , Herpesvirus Gallináceo 1/inmunología , Herpesvirus Gallináceo 2/inmunología , Síndromes de Inmunodeficiencia/veterinaria , Linfoma/veterinaria , Enfermedad de Marek/inmunología , Animales , Anticuerpos Antivirales/biosíntesis , Carcinogénesis/genética , Carcinogénesis/patología , Pollos , Femenino , Herpesvirus Gallináceo 1/genética , Herpesvirus Gallináceo 1/patogenicidad , Herpesvirus Gallináceo 2/genética , Herpesvirus Gallináceo 2/patogenicidad , Inmunidad Humoral/efectos de los fármacos , Síndromes de Inmunodeficiencia/genética , Síndromes de Inmunodeficiencia/inmunología , Síndromes de Inmunodeficiencia/virología , Linfoma/genética , Linfoma/inmunología , Linfoma/virología , Enfermedad de Marek/genética , Enfermedad de Marek/patología , Enfermedad de Marek/virología , MicroARNs/genética , MicroARNs/inmunología , ARN Viral/genética , ARN Viral/inmunología , Especificidad de la Especie , Vacunas Virales/administración & dosificación , Virulencia
7.
Avian Pathol ; 47(4): 427-433, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29745244

RESUMEN

This article reports nine cases of neurological disease in brown layer pullets that occured in various European countries between 2015 and 2018. In all cases, the onset of neurological clinical signs was at 4-8 weeks of age and they lasted up to 22 weeks of age. Enlargement of peripheral nerves was the main lesion observed in all cases. Histopathological evaluation of nerves revealed oedema with moderate to severe infiltration of plasma cells. Marek's disease (MD) was ruled out by real-time PCR as none of the evaluated tissues had a high load of oncogenic MD virus (MDV) DNA, characteristics of MD. Based on the epidemiological data (layers with clinical signs starting at 5-8 weeks of age), gross lesions (peripheral nerve enlargement with a lack of tumours in other organs), histopathological lesions (oedema and infiltration of plasma cells), and no evidence of high load of MDV DNA, we concluded that those cases were due to peripheral neuropathy (PN). PN is an autoimmune disease easily misdiagnosed as MD, leading to a costly enforcement of the vaccination protocol. Additional vaccination against MD does not protect against PN and could worsen the clinical signs by over-stimulating the immune system. Differential diagnosis between PN and MD should always be considered in cases of neurological disease with enlargement of peripheral nerves as the only gross lesion. This case report shows for the first time how real-time PCR to detect oncogenic MDV is a very valuable tool in the differential diagnosis of PN and MD.


Asunto(s)
Pollos/virología , Mardivirus/aislamiento & purificación , Enfermedad de Marek/diagnóstico , Enfermedades del Sistema Nervioso Periférico/veterinaria , Enfermedades de las Aves de Corral/diagnóstico , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Animales , ADN Viral/análisis , ADN Viral/genética , Diagnóstico Diferencial , Mardivirus/genética , Enfermedad de Marek/patología , Enfermedad de Marek/virología , Enfermedades del Sistema Nervioso Periférico/diagnóstico , Enfermedades del Sistema Nervioso Periférico/patología , Enfermedades de las Aves de Corral/patología
8.
Avian Pathol ; 46(4): 376-385, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28151004

RESUMEN

Marek's disease virus (MDV) is a herpesvirus that induces lymphoma and immunosuppression in chickens. MDV-induced immunosuppression (MDV-IS) is complex and can be divided into two phases: early-MDV-IS associated with cytolytic infection in the lymphoid organs in chickens lacking maternal antibodies against MDV (MAbs) and late-MDV-IS that appears later in the pathogenesis and occurs even in chickens bearing MAbs. We have recently developed a model to reproduce late-MDV-IS under laboratory conditions. This model evaluates late-MDV-IS indirectly by assessing the effect of MDV infection on the efficacy of infectious laryngotracheitis (ILT) vaccines against challenge with ILT virus. In the present study, we have used this model to investigate the role of two factors (MDV pathotype and host sex) on the development of late-MDV-IS. Five MDV strains representing three different pathotypes: virulent (vMDV; 617A, GA), very virulent (vvMDV; Md5), and very virulent plus (vv+MDV; 648A, 686), were evaluated. Only vv+ strains were able to induce late-MDV-IS. An immunosuppression rank (IS-rank) was established based on the ability of MDV to reduce the efficacy of chicken embryo origin vaccine (values go from 0 to 100, with 100 being the highest immunosuppressive ability). The IS-rank of the evaluated MDV strains ranged from 5.97 (GA) to 20.8 (617A) in the vMDV strains, 5.97 to 16.24 in the vvMDV strain Md5, and 39.08 to 68.2 in the vv+ strains 648A and 686. In this study both male and female chickens were equally susceptible to MDV-IS by vv+MDV 686. Our findings suggest that late-MDV-IS is a unique feature of vv+ strains.


Asunto(s)
Pollos , Mardivirus/clasificación , Enfermedad de Marek/inmunología , Animales , Femenino , Regulación de la Expresión Génica/inmunología , Masculino , Enfermedad de Marek/prevención & control , Enfermedad de Marek/virología , MicroARNs/genética , MicroARNs/metabolismo , Factores Sexuales , Organismos Libres de Patógenos Específicos , Vacunas Virales/inmunología
9.
Avian Pathol ; 45(6): 606-615, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27207594

RESUMEN

Marek's disease virus (MDV) is a herpesvirus that induces lymphomas and immunosuppression in chickens. MDV-induced immunosuppression (MDV-IS) is divided into two phases: early-MDV-IS occurring mainly in chickens lacking maternal antibodies (MAb) against MDV and associated with lymphoid organ atrophy; and late-MDV-IS occurring once MDV enters latency and during tumour development. Our objectives were to document the impact of late-MDV-IS on commercial poultry (meat-type chickens bearing MAb against MDV and that were vaccinated or unvaccinated against MD) and to optimize a model to study late-MDV-IS under laboratory conditions. The impact of late-MDV-IS was evaluated by assessing the effect of early infection (day of age) with a very virulent plus MDV (vv+MDV) on the efficacy of chicken-embryo-origin (CEO) infectious laryngotracheitis (ILT) virus vaccine against ILT challenge. The CEO ILT vaccine was administered in water at 14 days of age and ILT virus (ILTV) challenge was done intratracheally at 30 days of age. Development of ILT was monitored by daily evaluation of clinical signs, development of gross and histological lesions in trachea, and quantification of ILTV transcripts in trachea. Infection with vv+MDV strain 648A resulted in total abrogation of protection conferred by the CEO vaccine against ILTV challenge even in chickens vaccinated at 1 day of age with either HVT, HVT+SB-1, or CVI988. Chickens exposed to vv+MDV prior to vaccination with CEO ILTV vaccine had similar (P < 0.05) clinical scores, gross lesions, histopathologic lesion scores, and load of ILTV transcripts in trachea after ILTV challenge, as chickens that were not vaccinated with CEO ILTV vaccine.


Asunto(s)
Pollos/inmunología , Herpesvirus Gallináceo 2/inmunología , Enfermedad de Marek/inmunología , Traqueítis/veterinaria , Vacunación/veterinaria , Vacunas Virales , Animales , Pollos/virología , Femenino , Terapia de Inmunosupresión , Enfermedad de Marek/virología , Modelos Inmunológicos , Organismos Libres de Patógenos Específicos , Traqueítis/prevención & control , Traqueítis/virología , Vacunas Virales/inmunología
10.
Avian Dis ; 59(3): 400-9, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26478159

RESUMEN

Marek's disease (MD) strain CVI988 is the most-protective commercially available vaccine against very virulent plus (vv+) Marek's disease virus (MDV). However, its use in meat-type chickens has been controversial. While several countries have been using CVI988 for more than 40 yr, others do not authorize its use or it is restricted mainly to layers. The use of CVI988 in meat-type chickens will be necessary in the future in areas where other vaccine protocols fail. The objective of this study was to evaluate factors (vaccine dose, vaccine origin, chicken genetics, age and route of vaccination, and combination with other MD vaccines) influencing the efficacy of CVI988 against MD in meat-type chickens. Three animal experiments were conducted in which various vaccine protocols using CVI988 were tested for their protection against challenge with vv+ strain 648A by contact at day of age. Experiments 1 and 2 were to compare the efficacy of CVI988 vaccines from three different origins (CVI988-A, CVI988-B, and CVI988-C) and evaluate the effect of vaccine dose and chicken genetics. Experiment 3 was to evaluate the effect of adding CVI988 vaccine to various vaccine protocols using other MD vaccines of serotypes 2 (SB-1) and 3 (rHVT). Our results show that, regardless of the origin of the vaccine, protection against early challenge with 648A was good when vaccines were administered at a high dose (>3000 plaque-forming units [PFU]). Differences among vaccines, however, were detected even when using a high dose in experiment 2 (vaccine CVI988-B conferred higher protection than did CVI988-C) but not in Experiment 1 (CVI988-B was compared to CVI988-A). The use of a fixed low dose (2000 PFU) of vaccine resulted in reduction in protection, and such reduction was more remarkable when using CV1988-A. No statistically significant differences were found when we compared the efficacy of CVI988 in two different genetic lines of broiler chickens (G1 and G2). Vaccination protocols that included CVI988 had better protection than protocols that only included MD vaccines of serotypes 2 and 3. This was true regardless of the vaccine protocol used (CVI988/rHVT+SB-1; CVI988+rHVT+SB-1/None; rHVT+SB-1/CVI988; wherein the vaccine before the slash (/) was administered in ovo at embryonation day 18 and the vaccine after the slash was administered at day of age, subcutaneously). When only vaccines of serotypes 2 and 3 were used, protection against early challenge with vv+MDV was higher when vaccines were administered in ovo (rHVT+SB-1/None) than if vaccines were administered at hatch (None/rHVT+SB-1). Monitoring vaccine DNA load in feather pulp (FP) samples at 1 wk was used to monitor vaccination, and results showed that differences in vaccine replication exist among vaccines but such differences were not necessarily related to protection (r = 0.41, P > 0.05). Monitoring load of challenge MDV DNA in FP at 21 days was conducted, and results correlated (r = 0.85, P < 0.05) with the percentage of chickens with MD lesions at the termination of the study, confirming that early diagnosis is a very powerful tool with which to evaluate protection.


Asunto(s)
Pollos/clasificación , Enfermedad de Marek/prevención & control , Vacunas Virales/inmunología , Animales , Genoma Viral , Tejido Linfoide , Enfermedad de Marek/diagnóstico , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Carga Viral
11.
Avian Dis ; 59(3): 375-83, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26478155

RESUMEN

Administration of Marek's disease (MD) vaccines in ovo has become a common practice for the poultry industry. Efficacy of MD vaccines is very high, even though they are administered to chicken embryos that are immunologically immature. We have recently demonstrated that in ovo vaccination with turkey herpesvirus (HVT) results in increased activation of T cells at hatch. Our previous results suggested that in ovo vaccination with HVT might have a positive impact not only on MD protection but also on the overall maturity of the developing immune system of the chicken (Gallus gallus domesticus). The objective of this study was to evaluate the effect of administration of HVT at 18 days of embryonation (ED) on the maturation of the embryo immune system. Four experiments were conducted in Specific-Pathogen-Free Avian Supplies (SPAFAS) chickens to evaluate the effect of administration of HVT at 18 ED on the splenic cell phenotypes at day of age (experiment 1) and on the ability of 1-day-old chickens to respond to various antigens compared with older birds (experiments 2 and 3). In addition, a fourth experiment was conducted to elucidate whether administration of other serotype's MD vaccines (CVI988 and SB-1) at 18 ED had the same effect as HVT on the spleen cell phenotypes at day of age. Our results demonstrated that 1-day-old chickens that had received HVT in ovo (1-day HVT) had higher percentages of CD45+, MHC-I+, CD45+MHC-I+, CD3+, MHC-II+, CD3+MHC-II+, CD4+, CD8+, and CD4+CD8+ cells in the spleen than 1-day-old sham-inoculated chickens (1-day sham). Moreover, spleens of 1-day HVT chickens had greater percentages of CD45+MHC-I+ cells and equal or greater numbers of CD4+CD8- and CD4-CD8+ cells than older unvaccinated chickens. In addition, administration of HVT at 18 ED rendered chicks at hatch more responsive to unrelated antigens such as concavalin A, phytohemagglutinin-L, and keyhole limpet hemocyanin. Administration of MD vaccines of other serotypes had an effect, although less remarkable than HVT, on the spleen cell phenotypes at hatch. Vaccines of all three serotypes resulted in an increased percentage of MHC-I+, CD45-MHC-I+, CD4-CD8+, and CD8+ cells, but only HVT resulted in a higher percentage of CD45+, CD45+MHC-I+, CD3+MHC-II+, and CD4+CD8- cells. Results of this study show that it is possible to hasten maturation of the chicken embryo immune system by administering HVT in ovo and open new avenues to optimize the procedure to improve and strengthen the immunocompetency of commercial chickens at hatch.


Asunto(s)
Embrión de Pollo/inmunología , Pollos/inmunología , Herpesvirus Meleágrido 1/inmunología , Vacunación/veterinaria , Vacunas Virales/inmunología , Animales , Anticuerpos Antivirales/sangre , Proliferación Celular , Linfocitos/fisiología , Enfermedad de Marek/prevención & control , Organismos Libres de Patógenos Específicos , Bazo/citología , Vacunas Virales/administración & dosificación
12.
Avian Dis ; 59(2): 255-62, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26473676

RESUMEN

Laryngotracheitis (LT) is a highly contagious respiratory disease of chickens that produces significant economic losses to the poultry industry. Traditionally, LT has been controlled by administration of modified live vaccines. In recent years, the use of recombinant DNA-derived vaccines using turkey herpesvirus (HVT) and fowlpox virus has expanded, as they protect not only against the vector used but also against LT. However, HVT-based vaccines confer limited protection against challenge, with emergent very virulent plus Marek's disease virus (vv+MDV). Serotype 1 vaccines have been proven to be the most efficient against vv+MDV. In particular, deletion of oncogene MEQ from the oncogenic vvMDV strain Md5 (BACδMEQ) resulted in a very efficient vaccine against vv+MDV. In this work, we have developed two recombinant vaccines against MD and LT by using BACδMEQ as a vector that carries either the LT virus (LTV) gene glycoprotein B (gB; BACΔMEQ-gB) or LTV gene glycoprotein J (gJ; BACδMEQ-gJ). We have evaluated the protection that these recombinant vaccines confer against MD and LT challenge when administered alone or in combination. Our results demonstrated that both bivalent vaccines (BACΔMEQ-gB and BACδMEQ-gJ) replicated in chickens and were safe to use in commercial meat-type chickens bearing maternal antibodies against MDV. BACΔMEQ-gB protected as well as a commercial recombinant (r)HVT-LT vaccine against challenge with LTV. However, BACδMEQ-gJ did not protect adequately against LT challenge or increase protection conferred by BACΔMEQ-gB when administered in combination. On the other hand, both BACΔMEQ-gB and BACδMEQ-gJ, administered alone or in combination, protected better against an early challenge with vv+MDV strain 648A than commercial strains of rHVT-LT or CVI988. Our results open a new avenue in the development of recombinant vaccines by using serotype 1 MDV as vectors.


Asunto(s)
Pollos , Infecciones por Herpesviridae/veterinaria , Herpesvirus Gallináceo 1/inmunología , Mardivirus/clasificación , Enfermedad de Marek/prevención & control , Vacunas Virales/inmunología , Animales , Femenino , Infecciones por Herpesviridae/prevención & control , Mardivirus/inmunología , Proyectos Piloto , Vacunas de ADN , Replicación Viral
13.
Avian Dis ; 58(2): 232-43, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25055627

RESUMEN

The serotype 1 Marek's disease virus (MDV) is the causative agent for Marek's disease (MD), a lymphoproliferative disease of chickens of great concern to the poultry industry. CVI988 (Rispens vaccine), an attenuated serotype 1 MDV, is currently the most efficacious commercially available vaccine for preventing MD. However, it is difficult to detect and differentiate CVI988 when other serotype 1 MDVs are present. To facilitate the detection of CVI988, we developed two sets of primers for a mismatch amplification mutation assay (MAMA) PCR that targeted the single nulceotide polymorphism associated with the H19 epitope of the phosphorylated protein 38 gene. The PCR was very specific. One primer set (oncogenic primers) amplified DNA from 15 different serotype 1 MDVs except CVI988. The other primer set (CVI988 primers) amplified DNA from CVI988 but not from any of the other 15 serotype 1 MDVs. A real-time PCR assay was developed using MAMA primers, and specificity and sensitivity was evaluated in vitro and in vivo. Mixtures of plasmids (CVI988 plasmid and oncogenic plasmid) at various concentrations were used to evaluate the sensitivity/specificity of MAMA primers in vitro. Both primer setswere able to amplify as little as one copy of their respective plasmid. Oncogenic primers were highly specific and only amplified CVI988 plasmid when the concentration of oncogenic plasmid was very low (1 X 10(1)) and CVI988 plasmid was very high (1 X 10(6)). Specificity of CVI988 primers was not as high because they could amplify oncogenic plasmids when the concentration of CVI988 plasmid was 1 x 10(3) and the concentration of oncogenic 1 x 10(2). Validation of MAMA primers in in vivo samples demonstrated that oncogenic primers can be used for both early diagnosis of MD in feather pulp (FP) samples collected at 3 wk of age and confirmation of MD diagnosis in tumors. CVI988 primers could be used to monitor CVI988 vaccination in samples with a low load of oncogenic MDV DNA (latently infected samples or negative) but not in samples with a high load of oncogenic MDV DNA (tumors). Our results suggest that monitoring CVI988 vaccination in FP samples collected at 1 wk of age ensures the specificity of the CVI988 primers.


Asunto(s)
Pollos , Herpesvirus Gallináceo 2/inmunología , Herpesvirus Gallináceo 3/inmunología , Vacunas contra la Enfermedad de Marek/inmunología , Enfermedad de Marek/prevención & control , Enfermedades de las Aves de Corral/prevención & control , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Animales , Embrión de Pollo , Herpesvirus Gallináceo 2/genética , Herpesvirus Gallináceo 3/genética , Enfermedad de Marek/inmunología , Vacunas contra la Enfermedad de Marek/genética , Polimorfismo de Nucleótido Simple , Enfermedades de las Aves de Corral/inmunología , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología
14.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38567815

RESUMEN

In cattle, lateral asymmetry affects ovarian function and embryonic sex, but the underlying molecular mechanisms remain unknown. The plasma metabolome of recipients serves to predict pregnancy after embryo transfer (ET). Thus, the aim of this study was to investigate whether the plasma metabolome exhibits distinct lateral patterns according to the sex of the fetus carried by the recipient and the active ovary side (AOS), i.e., the right ovary (RO) or the left ovary (LO). We analyzed the plasma of synchronized recipients by 1H+NMR on day 0 (estrus, n = 366) and day 7 (hours prior to ET; n = 367). Thereafter, a subset of samples from recipients that calved female (n = 50) or male (n = 69) was used to test the effects of embryonic sex and laterality on pregnancy establishment. Within the RO, the sex ratio of pregnancies carried was biased toward males. Significant differences (P < 0.05) in metabolite levels were evaluated based on the day of blood sample collection (days 0, 7 and day 7/day 0 ratio) using mixed generalized models for metabolite concentration. The most striking differences in metabolite concentrations were associated with the RO, both obtained by multivariate (OPLS-DA) and univariate (mixed generalized) analyses, mainly with metabolites measured on day 0. The metabolites consistently identified through the OPLS-DA with a higher variable importance in projection score, which allowed for discrimination between male fetus- and female fetus-carrying recipients, were hippuric acid, l-phenylalanine, and propionic acid. The concentrations of hydroxyisobutyric acid, propionic acid, l-lysine, methylhistidine, and hippuric acid were lowest when male fetuses were carried, in particular when the RO acted as AOS. No pathways were significantly regulated according to the AOS. In contrast, six pathways were found enriched for calf sex in the day 0 dataset, three for day 7, and nine for day 7/day 0 ratio. However, when the AOS was the right, 20 pathways were regulated on day 0, 8 on day 7, and 13 within the day 7/day 0 ratio, most of which were related to amino acid metabolism, with phenylalanine, tyrosine, and tryptophan biosynthesis and phenylalanine metabolism pathways being identified throughout. Our study shows that certain metabolites in the recipient plasma are influenced by the AOS and can predict the likelihood of carrying male or female embryos to term, suggesting that maternal metabolism prior to or at the time of ET could favor the implantation and/or development of either male or female embryos.


This study explored how the active ovary side (AOS, i.e., left or right) and the sex of the calf carried by the recipient relate to the plasma metabolome in blood. For this purpose, we analyzed blood samples from heifers at two specific times: the day of the estrus and the day of the embryo transfer. We found significant differences in the sex ratio of pregnancies carried in the right ovary, and in the levels of certain metabolites depending on whether the active ovary was on the right or left and whether the calf was male or female. As examples, the concentrations of hydroxyisobutyric acid, propionic acid, l-lysine, methylhistidine, and hippuric acid were lowest when male calves were carried, in particular when the right ovary was active. Interestingly, the calf sex also influenced certain metabolic pathways, especially in the right AOS, several of them related to amino acid metabolism. However, no significant metabolic pathway changes were observed based solely on which ovary was active. Overall, the study suggests that the metabolism of the recipient, influenced by the AOS, might play a role in the successful implantation and development of embryos of a certain sex. This insight could potentially help to predict and improve pregnancy outcomes in cattle through embryo transfer techniques.


Asunto(s)
Transferencia de Embrión , Hipuratos , Ovario , Propionatos , Masculino , Embarazo , Bovinos , Femenino , Animales , Índice de Embarazo , Transferencia de Embrión/veterinaria , Metaboloma , Fenilalanina
15.
Viral Immunol ; 37(2): 89-100, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38301195

RESUMEN

Herpesvirus of turkey (HVT) increases activation of T cells in 1-day-old chickens when administered in ovo. This study evaluated whether adding cytosine-guanosine oligodeoxynucleotides (CpG ODNs) to the HVT vaccine could enhance the adjuvant effect of HVT. We used a CpG ODN dose of 10 µg per egg. The experimental groups were (1) diluent-only control (sham), (2) HVT, (3) HVT+CpG ODN, (4) HVT+non-CpG ODN, (5) CpG ODN, and (6) non-CpG ODN control. Cellular response evaluation included measuring the frequencies of macrophages (KUL01+MHC-II+), gamma delta T cells (γδTCR+MHC-II+), CD4+, and CD8+ T cell subsets, including double-positive (DP) cells. In addition, CD4+ and CD8+ T cell activation was evaluated by measuring the cellular expression of major histocompatibility complex class II (MHC-II), CD44 or CD28 costimulatory molecules. An adjuvant effect was considered when HVT+CpG ODN, but not HVT+non CpG ODN, or CpG ODN, or non-CpG ODN, induced significantly increased effects on any of the immune parameters examined when compared with HVT. The findings showed that (1) HVT vaccination induced significantly higher frequencies of γδ+MHC-II+ and CD4+CD28+ T cells when compared with sham chickens. Frequencies of DP and CD4+CD28+ T cells in HVT-administered birds were significantly higher than those observed in the non-CpG ODN group. (2) Groups receiving HVT+CpG ODN or CpG ODN alone were found to have significantly increased frequencies of activated CD4+ and CD8+ T cells, when compared with HVT. Our results show that CpG ODN administration in ovo with or without HVT significantly increased frequencies of activated CD4+ and CD8+ T cells.


Asunto(s)
Herpesviridae , Vacunas , Animales , Pollos , Linfocitos T CD8-positivos , Antígenos CD28 , Adyuvantes Inmunológicos , Oligodesoxirribonucleótidos , Carne
16.
Orphanet J Rare Dis ; 19(1): 234, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38872169

RESUMEN

BACKGROUND: The low prevalence of rare diseases poses a significant challenge in advancing their understanding. This study aims to delineate the clinical and genetic characteristics of patients with rare eye diseases (RED) enrolled in the Spanish Rare Diseases Patient Registry. METHODS: A total of 864 patients from the registry database were included. Diseases were categorized into inherited retinal dystrophies (n=688); anterior segment diseases (n=48); congenital malformations (n=27); and syndromic diseases with ocular involvement including muscular (n=46), neurological (n=34), or metabolic (n=13); inflammatory diseases (n=4); and tumors (n=4). Data on visual acuity (VA) and/or visual field (VF), symptoms and signs, concurrent diseases in syndromic cases, age of onset and at diagnosis, affected genes, disability rating, inability to work and dependency grade recognition were collected. RESULTS: A mean diagnostic delay of 7 years from symptom onset was observed. Commonly reported symptoms included photophobia, night blindness, and progressive vision loss (≥57% of patients). Cataract was the most prevalent secondary disease (46%), with pseudophakia being the most common ocular surgery (26%). Hearing loss and cardiovascular diseases were the most prevalent concurrent systemic diseases (≥13%). Certificates of disability, incapacity for work, and dependency were held by 87%, 42%, and 19% of patients, respectively. Among the 719 patients with available VA data, 193 (27%) were blind, and 188 (26%) had moderate to severe visual impairment. Over half of the patients (54%) exhibited VF defects, and 216 (25%) had concentric contraction ≤5° or abolished VF. Most had genetic diseases with autosomal recessive (55%), autosomal dominant (30%), X-linked (9%), and mitochondrial (6%) patterns. One patient had mutations in both recessive USH2A and dominant RHO genes simultaneously. Of the 656 patients (75.7%) who underwent genetic testing, only 461 (70.3%) received a positive result (pathogenic or likely pathogenic mutations explaining the phenotype). We found 62 new gene variants related to RED not previously reported in databases of genetic variants related to specific phenotypes. CONCLUSIONS: This study delineates the clinical and genotypic profiles of RED in Spain. Genetic diseases, particularly retinal disorders, predominate, but a significant proportion of affected patients remain genetically undiagnosed, hindering potential gene therapy endeavors. Despite notable improvements in reducing diagnosis delays, it is still remarkable. RED frequently lead to disability and blindness among young populations.


Asunto(s)
Oftalmopatías , Enfermedades Raras , Sistema de Registros , Humanos , Masculino , Femenino , Oftalmopatías/genética , Oftalmopatías/epidemiología , España/epidemiología , Adulto , Enfermedades Raras/genética , Persona de Mediana Edad , Adolescente , Niño , Adulto Joven , Preescolar , Anciano , Lactante , Agudeza Visual/fisiología , Distrofias Retinianas/genética , Distrofias Retinianas/epidemiología , Distrofias Retinianas/diagnóstico
17.
Avian Dis ; 57(2 Suppl): 483-90, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23901765

RESUMEN

A questionnaire was widely distributed in 2011 to estimate the global prevalence of Marek's disease (MD) and gain a better understanding of current control strategies and future concerns. A total of 112 questionnaires were returned representing 116 countries from sources including national branch secretaries of the World Veterinary Poultry Association, vaccine, breeder, and production companies, as well as MD researchers from various backgrounds. Each country listed on a questionnaire was recorded as an individual entry, and on average there were 2.0 entries per country (median 1; range 1-13). All flock types were listed as having increased MD incidence during the last 10 yr in close to 50% of countries by at least one respondent, with the majority of these countries located within French-speaking Africa, Eastern Europe, East Asia, and South America. Only 18 countries (16%) indicated increasing MD incidence was likely due to higher virulent strains, while the presence of other immunosuppressive diseases was a more common explanation. Increased use of CVI988/Rispens was cited as the most likely reason for decreasing MD incidence in 49 countries (42%). In the United States, MD incidence has continued to decrease during the last 10 yr, reaching a record low in 2007 (0.0008%) as measured by leukosis condemnation rates in broilers at slaughter. However, a recent increase of leukosis condemnations in North Carolina and Pennsylvania needs to be closely monitored.


Asunto(s)
Pollos , Enfermedad de Marek/epidemiología , Enfermedad de Marek/prevención & control , Enfermedades de las Aves de Corral/epidemiología , Enfermedades de las Aves de Corral/prevención & control , Animales , Femenino , Incidencia , Masculino , Enfermedad de Marek/virología , Enfermedades de las Aves de Corral/virología , Prevalencia , Encuestas y Cuestionarios , Estados Unidos/epidemiología
18.
Vaccines (Basel) ; 11(2)2023 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-36851171

RESUMEN

Infectious laryngotracheitis (ILT) is an economically important disease of chickens. While the recombinant vaccines can reduce clinical disease severity, the associated drawbacks are poor immunogenicity and delayed onset of immunity. Here, we used CpG-oligonucleotides (ODN) as an in ovo adjuvant in boosting recombinant herpesvirus of turkey-laryngotracheitis (rHVT-LT) vaccine-induced responses in one-day-old broiler chickens. Two CpG-ODN doses (5 and 10 µg/egg) with no adverse effect on the vaccine-virus replication or chick hatchability were selected for immune-response evaluation. Results showed that while CpG-ODN adjuvantation induced an increased transcription of splenic IFNγ and IL-1ß, and lung IFNγ genes, the IL-1ß gene expression in the lung was significantly downregulated compared to the control. Additionally, the transcription of toll-like receptor (TLR)21 in the spleen and lung and inducible nitric oxide synthase (iNOS) in the spleen of all vaccinated groups was significantly reduced. Furthermore, splenic cellular immunophenotyping showed that the CpG-ODN-10µg adjuvanted vaccination induced a significantly higher number of macrophages, TCRγδ+, and CD4+ T cells as well as a higher frequency of activated T cells (CD4+CD44+) when compared to the control. Collectively, the findings suggested that CpG-ODN can boost rHVT-LT-induced immune responses in day-old chicks, which may help in anti-ILT defense during their later stages of life.

19.
Vaccine ; 41(15): 2514-2523, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36894394

RESUMEN

In ovo vaccination with herpesvirus of turkey (HVT) hastens immunocompetence in chickens and the recommended dose (RD) of 6080 plaque-forming-units (PFU) offers the most optimal effects. In previous studies conducted in egg-type chickens, in ovo vaccination with HVT enhanced lymphoproliferation, wing-web thickness with phytohemagglutinin-L (PHA-L), and increased spleen and lung interferon-gamma(IFN-γ) andToll-like receptor 3 (TLR3) transcripts. Here, we evaluated the cellular mechanisms by which HVT-RD can hasten immunocompetence in one-day-old meat-type chickens, and also determined if HVT adjuvantation with a TLR3 agonist, polyinosinic-polycytidylic acid (poly(I:C)), could enhance vaccine-induced responses and provide dose-sparing effects. Compared to sham-inoculated chickens, HVT-RD significantly increased transcription of splenic TLR3 and IFN γ receptor 2 (R2), and lung IFN γ R2, while the splenic IL-13 transcription was found decreased. Additionally, these birds showed increased wing-web thickness following PHA-L inoculation. The thickness was due to an innate inflammatory cell population, CD3+ T cells, and edema. In another experiment, HVT-1/2 (3040 PFU) supplemented with 50 µg poly(I:C) [HVT-1/2 + poly(I:C)] was administered in ovo and immune responses were compared with those produced by HVT-RD, HVT-1/2, 50 µg poly(I:C), and sham-inoculated. Immunophenotyping of splenocytes showed HVT-RD induced a significantly higher frequency of CD4+, CD4+MHC-II+, CD8+CD44+, and CD4+CD28+ T cells compared to sham-inoculated chickens, and CD8+MHC-II+, CD4+CD8+, CD4+CD8+CD28+, and CD4+CD8+CD44+ T cells compared to all groups. Treatment groups, except HVT-1/2 + poly(I:C), had significantly higher frequencies of γδ T cells and all groups induced significantly higher frequencies of activated monocytes/macrophages, compared to sham-inoculated chickens. Poly(I:C)-induced dose-sparing effect was only observed in the frequency of activated monocytes/macrophages. No differences in the humoral responses were observed. Collectively, HVT-RD downregulated IL-13 transcripts (Th2 immune response) and had strong immunopotentiation effects on innate immune responses and the activation of T cells. However addition of poly(I:C) offered a minimal adjuvant/dose-sparing effect.


Asunto(s)
Pollos , Enfermedad de Marek , Animales , Poli I-C/farmacología , Receptor Toll-Like 3 , Interleucina-13 , Antígenos CD28 , Herpesvirus Meleágrido 1 , Interferón gamma , Vacunación/veterinaria
20.
Viruses ; 15(10)2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37896880

RESUMEN

Infectious laryngotracheitis (ILT) is an economically important disease in chickens. We previously showed that an in ovo adjuvantation of recombinant herpesvirus of the turkey-Laryngotracheitis (rHVT-LT) vaccine with CpG-oligonucleotides (ODN) can boost vaccine-induced responses in one-day-old broiler chickens. Here, we evaluated the protective efficacy of in ovo administered rHVT-LT + CpG-ODN vaccination against a wild-type ILT virus (ILTV) challenge at 28 days of age and assessed splenic immune gene expression as well as cellular responses. A chicken-embryo-origin (CEO)-ILT vaccine administered in water at 14 days of age was also used as a comparative control for the protection assessment. The results showed that the rHVT-LT + CpG-ODN or the CEO vaccinations provided significant protection against the ILTV challenge and that the level of protection induced by both the vaccines was statistically similar. The protected birds had a significantly upregulated expression of interferon (IFN)γ or interleukin (IL)-12 cytokine genes. Furthermore, the chickens vaccinated with the rHVT-LT + CpG-ODN or CEO vaccine had a significantly higher frequency of γδ T cells and activated CD4+ or CD8+ T cells, compared to the unvaccinated-ILTV challenge control. Collectively, our findings suggest that CpG-ODN can be used as an effective adjuvant for rHVT-LT in ovo vaccination to induce protective immunity against ILT in broiler chickens.


Asunto(s)
Infecciones por Herpesviridae , Herpesvirus Gallináceo 1 , Enfermedades de las Aves de Corral , Vacunas Virales , Animales , Pollos , Adyuvantes de Vacunas , Herpesvirus Gallináceo 1/fisiología , Infecciones por Herpesviridae/prevención & control , Infecciones por Herpesviridae/veterinaria , Vacunación/veterinaria , Vacunas Sintéticas , Herpesvirus Meleágrido 1/genética , Pavos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA