Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Gen Virol ; 104(8)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37549001

RESUMEN

Despite the fact that Cladosporium sp. are ubiquitous fungi, their viromes have been little studied. By analysing a collection of Cladosporium fungi, two new partitiviruses named Cladosporium cladosporioides partitivirus 1 (CcPV1) and Cladosporium cladosporioides partitivirus 2 (CcPV2) co-infecting a strain of Cladosporium cladosporioides were identified. Their complete genome consists of two monocistronic dsRNA segments (RNA1 and RNA2) with a high percentage of pairwise identity on 5' and 3' end. The RNA directed RNA polymerase (RdRp) of both viruses and the capsid protein (CP) of CcPV1 display the classic characteristics required for their assignment to the Gammapartitivirus genus. In contrast, CcPV2 RNA2 encodes for a 41 KDa CP that is unusually smaller when aligned to CPs of other viruses classified in this genus. The structural role of this protein is confirmed by electrophoresis on acrylamide gel of purified viral particles. Despite the low percentage of identity between the capsid proteins of CcPV1 and CcPV2, their three-dimensional structures predicted by AlphaFold2 show strong similarities and confirm functional proximity. Fifteen similar viral sequences of unknown function were annotated using the CcPV2 CP sequence. The phylogeny of the CP was highly consistent with the phylogeny of their corresponding RdRp, supporting the organization of Gammapartitiviruses into three distinct clades despite stretching the current demarcation criteria. It is proposed that a new subgenus be created within the genus Gammapartitivirus for this new group.


Asunto(s)
Virus Fúngicos , Virus ARN , Cladosporium/genética , Virus Fúngicos/genética , Virus ARN/genética , Proteínas de la Cápside/genética , Hongos , ARN Polimerasa Dependiente del ARN/genética
2.
Med Mycol ; 61(11)2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37930839

RESUMEN

Aspergillus fumigatus is a fungal species causing diverse diseases in humans. The use of azoles for treatments of A. fumigatus diseases has resulted in azole resistance. Azoles are also widely used in the environment for crop protection, which resulted in azole resistance. Resistance is primarily due to mutations in cyp51A, which encodes the target protein for azoles. Here we addressed the occurrence of azole resistance in soils from a vast part of Switzerland. We aimed to associate the use of azoles in the environment with the occurrence of azole resistance. We targeted sample sites from different agricultural environments as well as sites with no agricultural practice (natural sites and urban sites). Starting from 327 sites, 113 A. fumigatus isolates were recovered (2019-2021), among which 19 were azole-resistant (15 with TR34/L98H and four with TR46/Y121F/T289A resistance mutations in cyp51A). Our results show that azole resistance was not associated with a specific agricultural practice. Azoles could be chemically detected in investigated soils, however, their presence was not associated with the occurrence of azole-resistant isolates. Interestingly, genetic markers of resistance to other fungicides were detected but only in azole-resistant isolates, thus reinforcing the notion that A. fumigatus cross-resistance to fungicides has an environmental origin. In conclusion, this study reveals the spreading of azole resistance in A. fumigatus from the environment in Switzerland. The proximity of agricultural areas to urban centers may facilitate the transmission of resistant strains to at-risk populations. Thus, vigilant surveillance is required to maintain effective treatment options for aspergillosis.


Aspergillus fumigatus is ubiquitous and causes diseases in humans. Antifungal drugs, and especially azoles, are used to combat A. fumigatus. Azoles are widely used in the environment, which exposes A. fumigatus and results in azole resistance. Azole resistance was investigated in Switzerland.


Asunto(s)
Aspergillus fumigatus , Fungicidas Industriales , Humanos , Azoles/farmacología , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Suelo , Suiza , Proteínas Fúngicas/genética , Farmacorresistencia Fúngica/genética , Pruebas de Sensibilidad Microbiana/veterinaria
3.
J Nat Prod ; 83(8): 2347-2356, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32705864

RESUMEN

The biotransformation of a mixture of resveratrol and pterostilbene was performed by the protein secretome of Botrytis cinerea. Several reaction conditions were tested to overcome solubility issues and to improve enzymatic activity. Using MeOH as cosolvent, a series of unusual methoxylated compounds was generated. The reaction was scaled-up, and the resulting mixture purified by semipreparative HPLC-PDA-ELSD-MS. Using this approach, 15 analogues were isolated in one step. Upon full characterization by NMR and HRMS analyses, eight of the compounds were new. The antibacterial activities of the isolated compounds were evaluated in vitro against the opportunistic pathogens Pseudomonas aeruginosa and Staphylococcus aureus. The selectivity index was calculated based on cytotoxic assays performed against human liver carcinoma cells (HepG2) and the human breast epithelial cell line (MCF10A). Some compounds revealed remarkable antibacterial activity against multidrug-resistant strains of S. aureus with moderate human cell line cytotoxicity.


Asunto(s)
Antibacterianos/farmacología , Botrytis/enzimología , Farmacorresistencia Bacteriana/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Estilbenos/farmacología , Biotransformación , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Pruebas de Sensibilidad Microbiana , Prueba de Estudio Conceptual
4.
Mycorrhiza ; 30(1): 5-22, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31982950

RESUMEN

Orchids are associated with diverse fungal taxa, including nonmycorrhizal endophytic fungi as well as mycorrhizal fungi. The orchid mycorrhizal (OM) symbiosis is an excellent model for investigating the biological interactions between plants and fungi due to their high dependency on these symbionts for growth and survival. To capture the complexity of OM interactions, significant genomic, numerous transcriptomic, and proteomic studies have been performed, unraveling partly the role of each partner. On the other hand, several papers studied the bioactive metabolites from each partner but rarely interpreted their significance in this symbiotic relationship. In this review, we focus from a biochemical viewpoint on the OM dynamics and its molecular interactions. The ecological functions of OM in plant development and stress resistance are described first, summarizing recent literature. Secondly, because only few studies have specifically looked on OM molecular interactions, the signaling pathways and compounds allowing the establishment/maintenance of mycorrhizal association involved in arbuscular mycorrhiza (AM) are discussed in parallel with OM. Based on mechanistic similarities between OM and AM, and recent findings on orchids' endophytes, a putative model representing the different molecular strategies that OM fungi might employ to establish this association is proposed. It is hypothesized here that (i) orchids would excrete plant molecule signals such as strigolactones and flavonoids but also other secondary metabolites; (ii) in response, OM fungi would secrete mycorrhizal factors (Myc factors) or similar compounds to activate the common symbiosis genes (CSGs); (iii) overcome the defense mechanism by evasion of the pathogen-associated molecular patterns (PAMPs)-triggered immunity and by secretion of effectors such as small inhibitor proteins; and (iv) finally, secrete phytohormones to help the colonization or disrupt the crosstalk of plant defense phytohormones. To challenge this putative model, targeted and untargeted metabolomics studies with special attention to each partner's contribution are finally encouraged and some technical approaches are proposed.


Asunto(s)
Micorrizas , Orchidaceae , Endófitos , Hongos , Proteómica , Simbiosis
5.
Phytopathology ; 109(9): 1555-1565, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31041882

RESUMEN

Late blight caused by the oomycete Phytophthora infestans constitutes the greatest threat to potato production worldwide. Considering the increasing concerns regarding the emergence of novel fungicide-resistant genotypes and the general demand for reducing inputs of synthetic and copper-based fungicides, the need for alternative control methods is acute. Several bacterial antagonists have shown anti-Phytophthora effects during in vitro and greenhouse experiments. We report the effects of three Pseudomonas strains recovered from field-grown potatoes against a collection of P. infestans isolates assembled for this study. The collection comprised 19 P. infestans isolates of mating types A1 and A2 greatly varying in fungicide resistance and virulence profiles as deduced from leaf disc experiments on Black's differential set. The mycelial growth of all P. infestans isolates was fully inhibited when co-cultivated with the most active Pseudomonas strain (R47). Moreover, the isolates reacted differently to exposure to the less active Pseudomonas strains (S19 and R76). Leaf disc infection experiments with six selected P. infestans isolates showed that four of them, including highly virulent and fungicide-resistant ones, could be efficiently controlled by different potato-associated Pseudomonas strains.[Formula: see text] Copyright © 2019 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Phytophthora infestans , Solanum tuberosum , Genotipo , Enfermedades de las Plantas/microbiología , Pseudomonas , Solanum tuberosum/microbiología
6.
Artículo en Inglés | MEDLINE | ID: mdl-29437612

RESUMEN

Aspergillus fumigatus is a ubiquitous opportunistic pathogen. This fungus can acquire resistance to azole antifungals due to mutations in the azole target (cyp51A). Recently, cyp51A mutations typical for environmental azole resistance acquisition (for example, TR34/L98H) have been reported. These mutations can also be found in isolates recovered from patients. Environmental azole resistance acquisition has been reported on several continents. Here we describe, for the first time, the occurrence of azole-resistant A. fumigatus isolates of environmental origin in Switzerland with cyp51A mutations, and we show that these isolates can also be recovered from a few patients. While the TR34/L98H mutation was dominant, a single azole-resistant isolate exhibited a cyp51A mutation (G54R) that was reported only for clinical isolates. In conclusion, our study demonstrates that azole resistance with an environmental signature is present in environments and patients of Swiss origin and that mutations believed to be unique to clinical settings are now also observed in the environment.


Asunto(s)
Antifúngicos/farmacología , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/genética , Azoles/farmacología , Sistema Enzimático del Citocromo P-450/genética , Farmacorresistencia Fúngica/genética , Proteínas Fúngicas/genética , Pruebas de Sensibilidad Microbiana , Suiza
7.
Molecules ; 23(3)2018 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-29534536

RESUMEN

Lung cancer is the most lethal form of cancer in the world. Its development often involves an overactivation of the nuclear factor kappa B (NF-κB) pathway, leading to increased cell proliferation, survival, mobility, and a decrease in apoptosis. Therefore, NF-κB inhibitors are actively sought after for both cancer chemoprevention and therapy, and fungi represent an interesting unexplored reservoir for such molecules. The aim of the present work was to find naturally occurring lung cancer chemopreventive compounds by investigating the metabolites of Penicillium vulpinum, a fungus that grows naturally on dung. Penicillium vulpinum was cultivated in Potato Dextrose Broth and extracted with ethyl acetate. Bioassay-guided fractionation of this extract was performed by measuring NF-κB activity using a HEK293 cell line transfected with an NF-κB-driven luciferase reporter gene. The mycotoxin patulin was identified as a nanomolar inhibitor of TNF-α-induced NF-κB activity. Immunocytochemistry and Western blot analyses revealed that its mechanism of action involved an inhibition of p65 nuclear translocation and was independent from the NF-κB inhibitor α (IκBα) degradation process. Enhancing its interest in lung cancer chemoprevention, patulin also exhibited antiproliferative, proapoptotic, and antimigration effects on human lung adenocarcinoma cells through inhibition of the Wnt pathway.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Pulmonares/metabolismo , Patulina/farmacología , Penicillium/química , Factor de Necrosis Tumoral alfa/metabolismo , Células A549 , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Regulación hacia Abajo , Ensayos de Selección de Medicamentos Antitumorales , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Patulina/química , Patulina/aislamiento & purificación , Transducción de Señal/efectos de los fármacos , Factor de Transcripción ReIA/metabolismo
8.
Artículo en Inglés | MEDLINE | ID: mdl-28674054

RESUMEN

Candida albicans is a major cause of fungal diseases in humans, and its resistance to available drugs is of concern. In an attempt to identify novel antifungal agents, we initiated a small-scale screening of a library of 199 natural plant compounds (i.e., natural products [NPs]). In vitro susceptibility profiling experiments identified 33 NPs with activity against C. albicans (MIC50s ≤ 32 µg/ml). Among the selected NPs, the sterol alkaloid tomatidine was further investigated. Tomatidine originates from the tomato (Solanum lycopersicum) and exhibited high levels of fungistatic activity against Candida species (MIC50s ≤ 1 µg/ml) but no cytotoxicity against mammalian cells. Genome-wide transcriptional analysis of tomatidine-treated C. albicans cells revealed a major alteration (upregulation) in the expression of ergosterol genes, suggesting that the ergosterol pathway is targeted by this NP. Consistent with this transcriptional response, analysis of the sterol content of tomatidine-treated cells showed not only inhibition of Erg6 (C-24 sterol methyltransferase) activity but also of Erg4 (C-24 sterol reductase) activity. A forward genetic approach in Saccharomyces cerevisiae coupled with whole-genome sequencing identified 2 nonsynonymous mutations in ERG6 (amino acids D249G and G132D) responsible for tomatidine resistance. Our results therefore unambiguously identified Erg6, a C-24 sterol methyltransferase absent in mammals, to be the main direct target of tomatidine. We tested the in vivo efficacy of tomatidine in a mouse model of C. albicans systemic infection. Treatment with a nanocrystal pharmacological formulation successfully decreased the fungal burden in infected kidneys compared to the fungal burden achieved by the use of placebo and thus confirmed the potential of tomatidine as a therapeutic agent.


Asunto(s)
Antifúngicos/farmacología , Productos Biológicos/farmacología , Candida albicans/efectos de los fármacos , Extractos Vegetales/farmacología , Animales , Candidiasis/tratamiento farmacológico , Candidiasis/microbiología , Línea Celular Tumoral , Farmacorresistencia Fúngica/efectos de los fármacos , Farmacorresistencia Fúngica/genética , Ergosterol/farmacología , Femenino , Fluconazol/farmacología , Genes Fúngicos/genética , Células HeLa , Humanos , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana/métodos , Saccharomyces cerevisiae/genética , Tomatina/análogos & derivados , Tomatina/farmacología
9.
J Nat Prod ; 80(4): 887-898, 2017 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-28332842

RESUMEN

The protein secretome of Botrytis cinerea was used to perform the biotransformation of resveratrol, pterostilbene, and a mixture of both. Metabolite profiling by UHPLC-HRMS revealed the presence of compounds with unusual molecular formula, suggesting the existence of new products. To isolate these products, the reactions were scaled-up, and 21 analogues were isolated and fully characterized by NMR and HRESIMS analyses. The reaction with pterostilbene afforded five new compounds, while the reaction with a mixture of pterostilbene and resveratrol afforded seven unusual stilbene dimers. The antifungal properties of these compounds were evaluated using in vitro bioassays against Plasmopara viticola. The cytological effects of the isolated antifungal compounds on the ultrastructure of P. viticola were also evaluated.


Asunto(s)
Antifúngicos/farmacología , Botrytis/química , Estilbenos/farmacología , Antifúngicos/química , Biotransformación , Proteínas Fúngicas/química , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Oomicetos/química , Enfermedades de las Plantas/microbiología , Resveratrol , Estilbenos/química , Estilbenos/metabolismo , Vitis/química
10.
Phytochem Anal ; 28(2): 93-100, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27921344

RESUMEN

INTRODUCTION: Histone deacetylases (HDAC) are considered as promising targets for cancer treatment. Today, four HDAC inhibitors, vorinostat, romidepsin, belinostat, and panobinostat, have been approved by the Food and Drug Administration (FDA) for cancer treatment, while others are in clinical trials. Among them, several are naturally occurring fungal metabolites. OBJECTIVE: To develop and optimise an enzyme assay for bio-guided identification of HDAC inhibitors in fungal strains. METHODS: Fluorescence and MS-based HDAC enzymatic assays were compared during the bio-guided fractionation of Penicillium griseofulvum. The MS-based approach was then optimised to evaluate HDAC selectivity using the human recombinant class I isoform HDAC1 and the class II isoform HDAC6. RESULTS: Fluorescence-based assays have several drawbacks when used for bio-guided fractionation because of the native fluorescence and the trypsin inhibitory ability of compounds present in many extracts. The MS-based method led to the isolation of gliocladride C, which is selective for HDAC1 and salirepol, which showed an HDAC6 selectivity. Their activity and presence in P. griseofulvum is described here for the first time. CONCLUSION: The UHPLC-ESI-MS/MS-based method using specific HDAC isoforms is suitable to isolate selective HDAC inhibitors by bio-guided fractionation of fungal strains. Also, it decreases potential interferences with natural products compared to the fluorescence-based assay.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Hongos/metabolismo , Histona Desacetilasas/metabolismo , Espectrometría de Masas en Tándem/métodos
11.
Anal Chem ; 88(6): 3317-23, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26882108

RESUMEN

Dereplication represents a key step for rapidly identifying known secondary metabolites in complex biological matrices. In this context, liquid-chromatography coupled to high resolution mass spectrometry (LC-HRMS) is increasingly used and, via untargeted data-dependent MS/MS experiments, massive amounts of detailed information on the chemical composition of crude extracts can be generated. An efficient exploitation of such data sets requires automated data treatment and access to dedicated fragmentation databases. Various novel bioinformatics approaches such as molecular networking (MN) and in-silico fragmentation tools have emerged recently and provide new perspective for early metabolite identification in natural products (NPs) research. Here we propose an innovative dereplication strategy based on the combination of MN with an extensive in-silico MS/MS fragmentation database of NPs. Using two case studies, we demonstrate that this combined approach offers a powerful tool to navigate through the chemistry of complex NPs extracts, dereplicate metabolites, and annotate analogues of database entries.


Asunto(s)
Productos Biológicos/química , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida/métodos , Simulación por Computador
12.
J Nat Prod ; 79(2): 300-7, 2016 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-26848627

RESUMEN

Chemical investigation of a dichloromethane extract of the aerial parts of Waltheria indica led to the isolation and characterization of five polyhydroxymethoxyflavonoids, namely, oxyanin A (1), vitexicarpin (3), chrysosplenol E (4), flindulatin (5), 5-hydroxy-3,7,4'-trimethoxyflavone (6), and six quinolone alkaloids, waltheriones M-Q (2, 7, 8, 10, 11) and 5(R)-vanessine (9). Among these, compounds 2, 7, 8, 10, and 11 have not yet been described in the literature. Their chemical structures were established by means of spectroscopic data interpretation including (1)H and (13)C, HSQC, HMBC, COSY, and NOESY NMR experiments and UV, IR, and HRESIMS. The absolute configurations of the compounds were established by ECD. The isolated constituents and 10 additional quinoline alkaloids previously isolated from the roots of the plant were evaluated for their in vitro antifungal activity against the human fungal pathogen Candida albicans, and 10 compounds (7, 9, 11-16, 18, 21) showed growth inhibitory activity on both planktonic cells and biofilms (MIC ≤ 32 µg/mL). Their spectrum of activity against other pathogenic Candida species and their cytotoxicity against human HeLa cells were also determined. In addition, the cytological effect of the antifungal isolated compounds on the ultrastructure of C. albicans was evaluated by transmission electron microscopy.


Asunto(s)
Alcaloides/aislamiento & purificación , Alcaloides/farmacología , Antifúngicos/aislamiento & purificación , Antifúngicos/farmacología , Flavonoides/aislamiento & purificación , Flavonoides/farmacología , Malvaceae/química , Quinolinas/aislamiento & purificación , Quinolinas/farmacología , Alcaloides/química , Antifúngicos/química , Candida albicans/efectos de los fármacos , Flavonoides/química , Humanos , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Transmisión , Estructura Molecular , Niger , Resonancia Magnética Nuclear Biomolecular , Componentes Aéreos de las Plantas/química , Raíces de Plantas/química , Quinolinas/química
13.
Molecules ; 21(3): 370, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26999098

RESUMEN

The ability of fungi isolated from nails of patients suffering from onychomycosis to induce de novo production of bioactive compounds in co-culture was examined. Comparison between the metabolite profiles produced by Sarocladium strictum, by Fusarium oxysporum, and by these two species in co-culture revealed de novo induction of fusaric acid based on HRMS. Structure confirmation of this toxin, using sensitive microflow NMR, required only three 9-cm Petri dishes of fungal culture. A targeted metabolomics study based on UHPLC-HRMS confirmed that the production of fusaric acid was strain-dependent. Furthermore, the detected toxin levels suggested that onychomycosis-associated fungal strains of the F. oxysporum and F. fujikuroi species complexes are much more frequently producing fusaric acid, and in higher amount, than strains of the F. solani species complex. Fusarium strains producing no significant amounts of this compound in pure culture, were shown to de novo produce that compound when grown in co-culture. The role of fusaric acid in fungal virulence and defense is discussed.


Asunto(s)
Técnicas de Cocultivo , Ácido Fusárico/biosíntesis , Fusarium/metabolismo , Onicomicosis/microbiología , Medios de Cultivo/química , Humanos , Espectroscopía de Resonancia Magnética
14.
J Nat Prod ; 78(12): 2994-3004, 2015 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-26654828

RESUMEN

A dichloromethane extract of the roots from the Panamanian plant Swartzia simplex exhibited a strong antifungal activity in a bioautography assay against a genetically modified hypersusceptible strain of Candida albicans. At-line HPLC activity based profiling of the crude extract enabled a precise localization of the antifungal compounds, and dereplication by UHPLC-HRESIMS indicated the presence of potentially new metabolites. Transposition of the HPLC reversed-phase analytical conditions to medium-pressure liquid chromatography (MPLC) allowed an efficient isolation of the major constituents. Minor compounds of interest were isolated from the MPLC fractions using semipreparative HPLC. Using this strategy, 14 diterpenes (1-14) were isolated, with seven (5-10, 14) being new antifungal natural products. The new structures were elucidated using NMR spectroscopy and HRESIMS analysis. The absolute configurations of some of the compounds were elucidated by electronic circular dichroism spectroscopy. The antifungal properties of these compounds were evaluated as their minimum inhibitory concentrations in a dilution assay against both hypersusceptible and wild-type strains of C. albicans and by assessment of their antibiofilm activities. The potential cytological effects on the ultrastructure of C. albicans of the antifungal compounds isolated were evaluated on thin sections by transmission electron microscopy.


Asunto(s)
Antifúngicos/aislamiento & purificación , Antifúngicos/farmacología , Productos Biológicos/aislamiento & purificación , Productos Biológicos/farmacología , Candida albicans/efectos de los fármacos , Diterpenos/aislamiento & purificación , Diterpenos/farmacología , Fabaceae/química , Antifúngicos/química , Productos Biológicos/química , Cromatografía Líquida de Alta Presión , Diterpenos/química , Humanos , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Panamá , Corteza de la Planta/química
15.
Phytochem Anal ; 25(2): 106-12, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24108497

RESUMEN

INTRODUCTION: The search for anti-fungal compounds has maintained a scientific interest notably due to existing difficulties in the treatment of mycoses and their increasing occurrence in hospitals. OBJECTIVE: Development of a simple method to rapidly identify anti-fungal compounds in crude plant extracts based on a HPLC microfractionation approach combined with an at-line anti-Candida assay. METHODS: The scale of the semi-preparative HPLC microfractionation was adapted to fit the sensitivity of the Candida albicans anti-fungal in a 96-well microdilution assay. This format is also compatible for MS and NMR dereplication of the active compounds. RESULTS: Based on the screening of 12 crude extracts of plants from French Polynesia, three plants, which displayed various levels of anti-fungal activities, were selected to assess the efficiency of the HPLC anti-fungal profiling and the scale necessary for microfractionation. The same anti-Candida assay was performed on the HPLC microfractions collected using a generic profiling method. Analysis of active microfractions by MS and NMR issued from the most active extract enabled an efficient dereplication of the compounds responsible for the anti-fungal activity. CONCLUSION: A generic HPLC anti-fungal profiling method was developed which revealed that only 50 mg of crude extract were sufficient for a rapid identification of compound(s) responsible for the anti-Candida activity. This approach was illustrated by the study of Alphitonia zizyphoides, a plant traditionally used to treat dermatomycoses.


Asunto(s)
Antifúngicos/aislamiento & purificación , Candida albicans/efectos de los fármacos , Fraccionamiento Químico/métodos , Cromatografía Líquida de Alta Presión/métodos , Extractos Vegetales/aislamiento & purificación , Rhamnaceae/química , Antifúngicos/química , Antifúngicos/farmacología , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/química , Extractos Vegetales/farmacología , Polinesia , Sensibilidad y Especificidad , Factores de Tiempo
16.
Phytochem Anal ; 25(4): 350-6, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24497327

RESUMEN

INTRODUCTION: Nuclear magnetic resonance (NMR) is one of the most commonly used analytical techniques in plant metabolomics. Although this technique is very reproducible and simple to implement, sample preparation procedures have a great impact on the quality of the metabolomics data. OBJECTIVE: Investigation of different sample preparation methods and establishment of an optimised protocol for untargeted NMR-based metabolomics of Vitis vinifera L. wood samples. METHODS: Wood samples from two different cultivars of V. vinifera with well-defined phenotypes (Gamaret and 2091) were selected as reference materials. Different extraction solvents (successively, dichloromethane, methanol and water, as well as ethyl acetate and 7:3 methanol-water (v/v)) and deuterated solvents (methanol-d4, 7:3 chloroform-d-methanol-d4 (v/v), dimethylsulphoxide-d6 and 9:1 dimethylsulphoxide-d6-water-d2 (v/v)) were evaluated for NMR acquisition, and the spectral quality was compared. The optimal extract concentration, chemical shift stability and peak area repeatability were also investigated. RESULTS: Ethyl acetate was found to be the most satisfactory solvent for the extraction of all representative chemical classes of secondary metabolites in V. vinifera wood. The optimal concentration of dried extract was 10 mg/mL and 7:3 chloroform-d-methanol-d4 (v/v) was the most suitable solvent system for NMR analysis. Multivariate data analysis was used to estimate the biological variation and clustering between different cultivars. CONCLUSION: Close attention should be paid to all required procedures before NMR analysis, especially to the selection of an extraction solvent and a deuterated solvent system to perform an extensive metabolomic survey of the specific matrix.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Metabolómica , Vitis/metabolismo , Madera , Cromatografía Líquida de Alta Presión , Solventes/química
17.
Molecules ; 19(9): 14004-21, 2014 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-25197936

RESUMEN

UV-C radiation is known to induce metabolic modifications in plants, particularly to secondary metabolite biosynthesis. To assess these modifications from a global and untargeted perspective, the effects of the UV-C radiation of the leaves of three different model plant species, Cissus antarctica Vent. (Vitaceae), Vitis vinifera L. (Vitaceae) and Cannabis sativa L. (Cannabaceae), were evaluated by an LC-HRMS-based metabolomic approach. The approach enabled the detection of significant metabolite modifications in the three species studied. For all species, clear modifications of phenylpropanoid metabolism were detected that led to an increased level of stilbene derivatives. Interestingly, resveratrol and piceid levels were strongly induced by the UV-C treatment of C. antarctica leaves. In contrast, both flavonoids and stilbene polymers were upregulated in UV-C-treated Vitis leaves. In Cannabis, important changes in cinnamic acid amides and stilbene-related compounds were also detected. Overall, our results highlighted phytoalexin induction upon UV-C radiation. To evaluate whether UV-C stress radiation could enhance the biosynthesis of bioactive compounds, the antioxidant activity of extracts from control and UV-C-treated leaves was measured. The results showed increased antioxidant activity in UV-C-treated V. vinifera extracts.


Asunto(s)
Cannabis/metabolismo , Cissus/metabolismo , Hojas de la Planta/metabolismo , Vitis/metabolismo , Benzotiazoles/química , Compuestos de Bifenilo/química , Cannabis/efectos de la radiación , Cissus/efectos de la radiación , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/aislamiento & purificación , Radicales Libres/química , Metaboloma/efectos de la radiación , Picratos/química , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Hojas de la Planta/efectos de la radiación , Espectrometría de Masa por Ionización de Electrospray , Ácidos Sulfónicos/química , Rayos Ultravioleta , Vitis/efectos de la radiación
18.
Front Chem ; 12: 1390066, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38863677

RESUMEN

Phenoxy radical coupling reactions are widely used in nature for the synthesis of complex molecules such as lignin. Their use in the laboratory has great potential for the production of high value compounds from the polyphenol family. While the enzymes responsible for the generation of the radicals are well known, the behavior of the latter is still enigmatic and difficult to control in a reaction flask. Previous work in our laboratory using the enzymatic secretome of B. cinerea containing laccases has shown that incubation of stilbenes leads to dimers, while incubation of phenylpropanoids leads to dimers as well as larger coupling products. Building on these previous studies, this paper investigates the role of different structural features in phenoxy radical couplings. We first demonstrate that the presence of an exocyclic conjugated double bond plays a role in the generation of efficient reactions. In addition, we show that the formation of phenylpropanoid trimers and tetramers can proceed via a decarboxylation reaction that regenerates this reactive moiety. Lastly, this study investigates the reactivity of other phenolic compounds: stilbene dimers, a dihydro-stilbene, a 4-O-methyl-stilbene and a simple phenol with the enzymatic secretome of B. cinerea. The observed efficient dimerization reactions consistently correlate with the presence of a para-phenol conjugated to an exocyclic double bond. The absence of this structural feature leads to variable results, with some compounds showing low conversion or no reaction at all. This research has allowed the development of a controlled method for the synthesis of specific dimers and tetramers of phenylpropanoid derivatives and novel stilbene derivatives, as well as an understanding of features that can promote efficient radical coupling reactions.

19.
Front Plant Sci ; 15: 1435943, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39233914

RESUMEN

Insects' host preferences are regulated by multiple factors whose interactions are only partly understood. Here we make use of an in-depth, untargeted metabolomic approach combining molecular networking (MN) and supervised Analysis of variance Multiblock Orthogonal Partial Least Squares (AMOPLS) to untangle egg-laying preferences of Drosophila suzukii, an invasive, highly polyphagous and destructive fruit pest originating from Southeast Asia. Based on behavioural experiments in the laboratory as well as field observation, we selected eight genetically related Vitis vinifera cultivars (e.g., Ancellotta, Galotta, Gamaret, Gamay, Gamay précoce, Garanoir, Mara and Reichensteiner) exhibiting significant differences in their susceptibility toward D. suzukii. The two most and the two least attractive red cultivars were chosen for further metabolomic analyses of their grape skins. The combination of MN and statistical AMOPLS findings with semi-quantitative detection information enabled us to identify flavonoids as interesting markers for differences in the attractiveness of the four studied grape cultivars towards D. suzukii. Overall, dihydroflavonols were accumulated in unattractive grape cultivars, while attractive grape cultivars were richer in flavonols. Crucially, both dihydroflavonols and flavonols were abundant metabolites in the semi-quantitative analysis of the extracted molecules from the grape skin. We discuss how these two flavonoid classes might influence the egg-laying behaviour of D. suzukii females and how they could serve as potential markers for D. suzukii infestations in grapes that can be potentially extended to other fruits. We believe that our novel, integrated analytical approach could also be applied to the study of other biological relationships characterised by multiple evolving parameters.

20.
Front Microbiol ; 15: 1439814, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39355425

RESUMEN

Introduction: Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, remains a serious threat to human health worldwide and the quest for new anti-tubercular drugs is an enduring and demanding journey. Natural products (NPs) have played a significant role in advancing drug therapy of infectious diseases. Methods: This study evaluated the suitability of a high-throughput infection system composed of the host amoeba Dictyostelium discoideum (Dd) and Mycobacterium marinum (Mm), a close relative of Mtb, to identify anti-infective compounds. Growth of Dd and intracellular Mm were quantified by using luminescence and fluorescence readouts in phenotypic assays. The system was first benchmarked with a set of therapeutic anti-Mtb antibiotics and then used to screen a library of biotransformed stilbenes. Results: The study confirmed both efficacy of established antibiotics such as rifampicin and bedaquiline, with activities below defined anti-mycobacterium susceptibility breakpoints, and the lack of activity of pyrazinamide against Mm. The screening revealed the promising anti-infective activities of trans-δ-viniferins and in particular of two compounds 17 and 19 with an IC50 of 18.1 µM, 9 µM, respectively. Both compounds had no activity on Mm in broth. Subsequent exploration via halogenation and structure-activity relationship studies led to the identification of derivatives with improved selectivity and potency. The modes of action of the anti-infective compounds may involve inhibition of mycobacterial virulence factors or boosting of host defense. Discussion: The study highlights the potential of biotransformation and NP-inspired derivatization approaches for drug discovery and underscores the utility of the Dd-Mm infection system in identifying novel anti-infective compounds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA