Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 52(19): 11215-11222, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30169027

RESUMEN

Machine learning techniques (MLTs) offer great power in analyzing complex data sets and have not previously been applied to non-occupational pollutant exposure. MLT models that can predict personal exposure to benzene have been developed and compared with a standard model using a linear regression approach (GLM). The models were tested against independent data sets obtained from three personal exposure measurement campaigns. A correlation-based feature subset (CFS) selection algorithm identified a reduced attribute set, with common attributes grouped under the use of paints in homes, upholstery materials, space heating, and environmental tobacco smoke as the attributes suitable to predict the personal exposure to benzene. Personal exposure was categorized as low, medium, and high, and for big data sets, both the GLM and MLTs show high variability in performance to correctly classify greater than 90 percentile concentrations, but the MLT models have a higher score when accounting for divergence of incorrectly classified cases. Overall, the MLTs perform at least as well as the GLM and avoid the need to input microenvironment concentrations.


Asunto(s)
Benceno , Contaminación por Humo de Tabaco , Monitoreo del Ambiente , Modelos Lineales , Aprendizaje Automático
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA