Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Mol Cell ; 65(1): 39-51, 2017 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-28061332

RESUMEN

Understanding RNA processing and turnover requires knowledge of cleavages by major endoribonucleases within a living cell. We have employed TIER-seq (transiently inactivating an endoribonuclease followed by RNA-seq) to profile cleavage products of the essential endoribonuclease RNase E in Salmonella enterica. A dominating cleavage signature is the location of a uridine two nucleotides downstream in a single-stranded segment, which we rationalize structurally as a key recognition determinant that may favor RNase E catalysis. Our results suggest a prominent biogenesis pathway for bacterial regulatory small RNAs whereby RNase E acts together with the RNA chaperone Hfq to liberate stable 3' fragments from various precursor RNAs. Recapitulating this process in vitro, Hfq guides RNase E cleavage of a representative small-RNA precursor for interaction with a mRNA target. In vivo, the processing is required for target regulation. Our findings reveal a general maturation mechanism for a major class of post-transcriptional regulators.


Asunto(s)
Proteínas Bacterianas/metabolismo , Endorribonucleasas/metabolismo , Precursores del ARN/metabolismo , ARN Bacteriano/metabolismo , ARN Mensajero/metabolismo , ARN Pequeño no Traducido/metabolismo , Salmonella enterica/enzimología , Regiones no Traducidas 3' , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Catálisis , Biología Computacional , Bases de Datos Genéticas , Endorribonucleasas/química , Endorribonucleasas/genética , Regulación Bacteriana de la Expresión Génica , Proteína de Factor 1 del Huésped/genética , Proteína de Factor 1 del Huésped/metabolismo , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Precursores del ARN/química , Precursores del ARN/genética , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Mensajero/química , ARN Mensajero/genética , ARN Pequeño no Traducido/química , ARN Pequeño no Traducido/genética , Salmonella enterica/genética , Relación Estructura-Actividad , Transcriptoma , Uridina/metabolismo
2.
Nucleic Acids Res ; 50(14): 8302-8320, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35808938

RESUMEN

Translocation of messenger RNA (mRNA) and transfer RNA (tRNA) substrates through the ribosome during protein synthesis, an exemplar of directional molecular movement in biology, entails a complex interplay of conformational, compositional, and chemical changes. The molecular determinants of early translocation steps have been investigated rigorously. However, the elements enabling the ribosome to complete translocation and reset for subsequent protein synthesis reactions remain poorly understood. Here, we have combined molecular simulations with single-molecule fluorescence resonance energy transfer imaging to gain insights into the rate-limiting events of the translocation mechanism. We find that diffusive motions of the ribosomal small subunit head domain to hyper-swivelled positions, governed by universally conserved rRNA, can maneuver the mRNA and tRNAs to their fully translocated positions. Subsequent engagement of peptidyl-tRNA and disengagement of deacyl-tRNA from mRNA, within their respective small subunit binding sites, facilitate the ribosome resetting mechanism after translocation has occurred to enable protein synthesis to resume.


Asunto(s)
Factor G de Elongación Peptídica , Ribosomas , Factor G de Elongación Peptídica/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/química , ARN de Transferencia/metabolismo , Ribosomas/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(7): 3610-3620, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32024753

RESUMEN

The substrate for ribosomes actively engaged in protein synthesis is a ternary complex of elongation factor Tu (EF-Tu), aminoacyl-tRNA (aa-tRNA), and GTP. EF-Tu plays a critical role in mRNA decoding by increasing the rate and fidelity of aa-tRNA selection at each mRNA codon. Here, using three-color single-molecule fluorescence resonance energy transfer imaging and molecular dynamics simulations, we examine the timing and role of conformational events that mediate the release of aa-tRNA from EF-Tu and EF-Tu from the ribosome after GTP hydrolysis. Our investigations reveal that conformational changes in EF-Tu coordinate the rate-limiting passage of aa-tRNA through the accommodation corridor en route to the peptidyl transferase center of the large ribosomal subunit. Experiments using distinct inhibitors of the accommodation process further show that aa-tRNA must at least partially transit the accommodation corridor for EF-Tu⋅GDP to release. aa-tRNAs failing to undergo peptide bond formation at the end of accommodation corridor passage after EF-Tu release can be reengaged by EF-Tu⋅GTP from solution, coupled to GTP hydrolysis. These observations suggest that additional rounds of ternary complex formation can occur on the ribosome during proofreading, particularly when peptide bond formation is slow, which may serve to increase both the rate and fidelity of protein synthesis at the expense of GTP hydrolysis.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Factor Tu de Elongación Peptídica/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , ARN de Transferencia/metabolismo , Ribosomas/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Transferencia Resonante de Energía de Fluorescencia , Guanosina Trifosfato/metabolismo , Cinética , Factor Tu de Elongación Peptídica/genética , Biosíntesis de Proteínas , ARN de Transferencia/genética , Aminoacil-ARN de Transferencia/genética , Subunidades Ribosómicas Grandes/genética , Subunidades Ribosómicas Grandes/metabolismo , Ribosomas/genética
4.
PLoS Comput Biol ; 16(11): e1008293, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33151943

RESUMEN

Molecular Dynamics (MD) simulations seek to provide atomic-level insights into conformationally dynamic biological systems at experimentally relevant time resolutions, such as those afforded by single-molecule fluorescence measurements. However, limitations in the time scales of MD simulations and the time resolution of single-molecule measurements have challenged efforts to obtain overlapping temporal regimes required for close quantitative comparisons. Achieving such overlap has the potential to provide novel theories, hypotheses, and interpretations that can inform idealized experimental designs that maximize the detection of the desired reaction coordinate. Here, we report MD simulations at time scales overlapping with in vitro single-molecule Förster (fluorescence) resonance energy transfer (smFRET) measurements of the amino acid binding protein LIV-BPSS at sub-millisecond resolution. Computationally efficient all-atom structure-based simulations, calibrated against explicit solvent simulations, were employed for sampling multiple cycles of LIV-BPSS clamshell-like conformational changes on the time scale of seconds, examining the relationship between these events and those observed by smFRET. The MD simulations agree with the smFRET measurements and provide valuable information on local dynamics of fluorophores at their sites of attachment on LIV-BPSS and the correlations between fluorophore motions and large-scale conformational changes between LIV-BPSS domains. We further utilize the MD simulations to inform the interpretation of smFRET data, including Förster radius (R0) and fluorophore orientation factor (κ2) determinations. The approach we describe can be readily extended to distinct biochemical systems, allowing for the interpretation of any FRET system conjugated to protein or ribonucleoprotein complexes, including those with more conformational processes, as well as those implementing multi-color smFRET.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Proteínas/química , Técnicas Biosensibles , Simulación de Dinámica Molecular , Conformación Proteica , Estudios de Tiempo y Movimiento
5.
Nucleic Acids Res ; 46(6): 3232-3244, 2018 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-29471537

RESUMEN

Archaea and eukaryotes have ribosomal P stalks composed of anchor protein P0 and aP1 homodimers (archaea) or P1•P2 heterodimers (eukaryotes). These P stalks recruit translational GTPases to the GTPase-associated center in ribosomes to provide energy during translation. The C-terminus of the P stalk is known to selectively recognize GTPases. Here we investigated the interaction between the P stalk and elongation factor 2 by determining the structures of Pyrococcus horikoshii EF-2 (PhoEF-2) in the Apo-form, GDP-form, GMPPCP-form (GTP-form), and GMPPCP-form bound with 11 C-terminal residues of P1 (P1C11). Helical structured P1C11 binds to a hydrophobic groove between domain G and subdomain G' of PhoEF-2, where is completely different from that of aEF-1α in terms of both position and sequence, implying that such interaction characteristic may be requested by how GTPases perform their functions on the ribosome. Combining PhoEF-2 P1-binding assays with a structural comparison of current PhoEF-2 structures and molecular dynamics model of a P1C11-bound GDP form, the conformational changes of the P1C11-binding groove in each form suggest that in response to the translation process, the groove has three states: closed, open, and release for recruiting and releasing GTPases.


Asunto(s)
Proteínas Arqueales/metabolismo , Factor 2 de Elongación Peptídica/metabolismo , Pyrococcus horikoshii/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Secuencia de Aminoácidos , Proteínas Arqueales/química , Proteínas Arqueales/genética , Guanosina Difosfato/química , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/análogos & derivados , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Factor 2 de Elongación Peptídica/química , Factor 2 de Elongación Peptídica/genética , Unión Proteica , Conformación Proteica , Pyrococcus horikoshii/genética , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Ribosomas/química , Homología de Secuencia de Aminoácido
6.
J Am Chem Soc ; 141(26): 10236-10246, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31058500

RESUMEN

Molecular switches such as GTPases are powerful devices turning "on" or "off" biomolecular processes at the core of critical biological pathways. To develop molecular switches de novo, an intimate understanding of how they function is required. Here we investigate the thermodynamic parameters that define the nucleotide-dependent switch mechanism of elongation factor (EF) Tu as a prototypical molecular switch. EF-Tu alternates between GTP- and GDP-bound conformations during its functional cycle, representing the "on" and "off" states, respectively. We report for the first time that the activation barriers for nucleotide association are the same for both nucleotides, suggesting a guanosine nucleoside or ribose-first mechanism for nucleotide association. Additionally, molecular dynamics (MD) simulations indicate that enthalpic stabilization of GDP binding compared to GTP binding originates in the backbone hydrogen bonding network of EF-Tu. In contrast, binding of GTP to EF-Tu is entropically driven by the liberation of bound water during the GDP- to GTP-bound transition. GDP binding to the apo conformation of EF-Tu is both enthalpically and entropically favored, a feature unique among translational GTPases. This indicates that the apo conformation does not resemble the GDP-bound state. Finally, we show that antibiotics and single amino acid substitutions can be used to target specific structural elements in EF-Tu to redesign the thermodynamic landscape. These findings demonstrate how, through evolution, EF-Tu has fine-tuned the structural and dynamic features that define nucleotide binding, providing insight into how altering these properties could be exploited for protein engineering.


Asunto(s)
Escherichia coli/metabolismo , GTP Fosfohidrolasas/metabolismo , Factor Tu de Elongación Peptídica/metabolismo , Termodinámica , Sitios de Unión , Escherichia coli/enzimología , GTP Fosfohidrolasas/química , Guanosina/química , Guanosina/metabolismo , Simulación de Dinámica Molecular , Factor Tu de Elongación Peptídica/química
7.
Anal Biochem ; 537: 106-113, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28941789

RESUMEN

Fluorescently labeled phosphate-binding proteins can be used as biomolecular tools to measure the release of inorganic phosphate (Pi) from enzymes in real time, enabling the detailed kinetic analysis of dephosphorylating enzymes using rapid-kinetics approaches. Previously reported methods to purify fluorescently labeled phosphate-binding proteins (PhoS) from Escherichia coli are laborious, and a simplified approach is needed. Here, we report the characterization of a cytosol-localized variant (A197C) of PhoS that allows a streamlined purification for subsequent covalent conjugation with a fluorescent dye. We show that export of PhoS into the periplasmic space is not required for the fluorescence-based detection of Pi binding. Furthermore, we report the addition of a C-terminal His-tag, simplifying the purification of PhoS from the cytosol via Ni2+-affinity chromatography, yielding a fully functional fusion protein (HC PhoS A197C). We demonstrate the utility of fluorescently labeled HC PhoS A197C for rapid-kinetics applications by measuring, using stopped-flow, the Pi release kinetics from LepA/EF4 following 70S ribosome-stimulated GTP hydrolysis. Altogether, the approach developed here allows for the high-yield and simplified in-house production of a Pi detection system suitable for rapid-kinetics approaches with comparable sensitivity to the commercially available Phosphate Sensor.


Asunto(s)
Técnicas de Química Analítica/métodos , Proteínas de Escherichia coli/aislamiento & purificación , Escherichia coli/metabolismo , Colorantes Fluorescentes/química , Proteínas de Unión a Fosfato/aislamiento & purificación , Espectrometría de Fluorescencia , Cromatografía de Afinidad , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Colorantes Fluorescentes/metabolismo , Cinética , Mutagénesis Sitio-Dirigida , Proteínas de Unión a Fosfato/química , Proteínas de Unión a Fosfato/genética , Fosfatos/química , Fosfatos/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación
8.
Curr Opin Struct Biol ; 86: 102804, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38569462

RESUMEN

Molecular dynamics simulations have emerged as a powerful set of tools to unravel the intricate dynamics of ribosomes during protein synthesis. Recent advancements in this field have enabled simulations to delve deep into the conformational rearrangements of ribosomes and associated factors, providing invaluable insights into the intricacies of translation. Emphasis on simulations has recently been on translation elongation, such as tRNA selection, translocation, and ribosomal head-swivel motions. These studies have offered crucial structural interpretations of how genetic information is faithfully translated into proteins. This review outlines recent discoveries concerning ribosome conformational changes occurring during translation elongation, as elucidated through molecular dynamics simulations.


Asunto(s)
Simulación de Dinámica Molecular , Extensión de la Cadena Peptídica de Translación , Ribosomas , Ribosomas/metabolismo , Ribosomas/química , ARN de Transferencia/metabolismo , ARN de Transferencia/química , Humanos
9.
Nat Commun ; 14(1): 5582, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37696823

RESUMEN

Accurate protein synthesis is determined by the two-subunit ribosome's capacity to selectively incorporate cognate aminoacyl-tRNA for each mRNA codon. The molecular basis of tRNA selection accuracy, and how fidelity can be affected by antibiotics, remains incompletely understood. Using molecular simulations, we find that cognate and near-cognate tRNAs delivered to the ribosome by Elongation Factor Tu (EF-Tu) can follow divergent pathways of motion into the ribosome during both initial selection and proofreading. Consequently, cognate aa-tRNAs follow pathways aligned with the catalytic GTPase and peptidyltransferase centers of the large subunit, while near-cognate aa-tRNAs follow pathways that are misaligned. These findings suggest that differences in mRNA codon-tRNA anticodon interactions within the small subunit decoding center, where codon-anticodon interactions occur, are geometrically amplified over distance, as a result of this site's physical separation from the large ribosomal subunit catalytic centers. These insights posit that the physical size of both tRNA and ribosome are key determinants of the tRNA selection fidelity mechanism.


Asunto(s)
Magnoliopsida , Aminoacil-ARN de Transferencia , Aminoacil-ARN de Transferencia/genética , ARN Mensajero/genética , Anticodón , Ribosomas , Biosíntesis de Proteínas
10.
Biosens Bioelectron ; 200: 113899, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-34974264

RESUMEN

Fluorescently-labeled solute-binding proteins that alter their fluorescence output in response to ligand binding have been utilized as biosensors for a variety of applications. Coupling protein ligand binding to altered fluorescence output often requires trial and error-based testing of both multiple labeling positions and fluorophores to produce a functional biosensor with the desired properties. This approach is laborious and can lead to reduced ligand binding affinity or altered ligand specificity. Here we report the Computational Identification of Non-disruptive Conjugation sites (CINC) for streamlined identification of fluorophore conjugation sites. By exploiting the structural dynamics properties of proteins, CINC identifies positions where conjugation of a fluorophore results in a fluorescence change upon ligand binding without disrupting protein function. We show that a CINC-developed maltooligosaccharide (MOS)-detecting biosensor is capable of rapid (kon = 20 µM-1s-1), sensitive (sub-µM KD) and selective MOS detection. The MOS-detecting biosensor is modular with respect to the spectroscopic properties and demonstrates portability to detecting MOS released via α-amylase-catalyzed depolymerization of starch using both a stopped-flow and a microplate reader assay. Our MOS-detecting biosensor represents a first-in-class probe whose design was guided by changes in localized dynamics of individual amino acid positions, supporting expansion of the CINC pipeline as an indispensable tool for a wide range of protein engineering applications.


Asunto(s)
Técnicas Biosensibles , Carbohidratos , Colorantes Fluorescentes , Ligandos , Espectrometría de Fluorescencia
11.
J Mol Biol ; 432(9): 3064-3077, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32061931

RESUMEN

Selection of correct aminoacyl (aa)-tRNA at the ribosomal A site is fundamental to maintaining translational fidelity. Aa-tRNA selection is a multistep process facilitated by the guanosine triphosphatase elongation factor (EF)-Tu. EF-Tu delivers aa-tRNA to the ribosomal A site and participates in tRNA selection. The structural mechanism of how EF-Tu is involved in proofreading remains to be fully resolved. Here, we provide evidence that switch I of EF-Tu facilitates EF-Tu's involvement during aa-tRNA selection. Using structure-based and explicit solvent molecular dynamics simulations based on recent cryo-electron microscopy reconstructions, we studied the conformational change of EF-Tu from the guanosine triphosphate to guanine diphosphate conformation during aa-tRNA accommodation. Switch I of EF-Tu rapidly converts from an α-helix into a ß-hairpin and moves to interact with the acceptor stem of the aa-tRNA. In doing so, switch I gates the movement of the aa-tRNA during accommodation through steric interactions with the acceptor stem. Pharmacological inhibition of the aa-tRNA accommodation pathway prevents the proper positioning of switch I with the aa-tRNA acceptor stem, suggesting that the observed interactions are specific for cognate aa-tRNA substrates, and thus capable of contributing to the fidelity mechanism.


Asunto(s)
Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Factor Tu de Elongación Peptídica/química , Factor Tu de Elongación Peptídica/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , Microscopía por Crioelectrón , Guanosina Trifosfato/metabolismo , Humanos , Modelos Moleculares , Simulación de Dinámica Molecular , Biosíntesis de Proteínas , Estructura Secundaria de Proteína , Ribosomas/metabolismo
12.
Cell Rep ; 31(5): 107611, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32375039

RESUMEN

The ribosome is an RNA-protein complex that is essential for translation in all domains of life. The structural and catalytic core of the ribosome is its ribosomal RNA (rRNA). While mutations in ribosomal protein (RP) genes are known drivers of oncogenesis, oncogenic rRNA variants have remained elusive. We identify a cancer-specific single-nucleotide variation in 18S rRNA at nucleotide 1248.U in up to 45.9% of patients with colorectal carcinoma (CRC) and present across >22 cancer types. This is the site of a unique hyper-modified base, 1-methyl-3-α-amino-α-carboxyl-propyl pseudouridine (m1acp3Ψ), a >1-billion-years-conserved RNA modification at the peptidyl decoding site of the ribosome. A subset of CRC tumors we call hypo-m1acp3Ψ shows sub-stoichiometric m1acp3Ψ modification, unlike normal control tissues. An m1acp3Ψ knockout model and hypo-m1acp3Ψ patient tumors share a translational signature characterized by highly abundant ribosomal proteins. Thus, m1acp3Ψ-deficient rRNA forms an uncharacterized class of "onco-ribosome" which may serve as a chemotherapeutic target for treating cancer patients.


Asunto(s)
Neoplasias/genética , Oncogenes/genética , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Secuencia de Bases/genética , Humanos , Conformación de Ácido Nucleico , Seudouridina/genética
13.
Sci Rep ; 5: 7677, 2015 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-25566871

RESUMEN

The phosphate-binding loop (P-loop) is a conserved sequence motif found in mononucleotide-binding proteins. Little is known about the structural dynamics of this region and its contribution to the observed nucleotide binding properties. Understanding the underlying design principles is of great interest for biomolecular engineering applications. We have used rapid-kinetics measurements in vitro and molecular dynamics (MD) simulations in silico to investigate the relationship between GTP-binding properties and P-loop structural dynamics in the universally conserved Elongation Factor (EF) Tu. Analysis of wild type EF-Tu and variants with substitutions at positions in or adjacent to the P-loop revealed a correlation between P-loop flexibility and the entropy of activation for GTP dissociation. The same variants demonstrate more backbone flexibility in two N-terminal amino acids of the P-loop during force-induced EF-Tu · GTP dissociation in Steered Molecular Dynamics simulations. Amino acids Gly18 and His19 are involved in stabilizing the P-loop backbone via interactions with the adjacent helix C. We propose that these P-loop/helix C interactions function as a conserved P-loop anchoring module and identify the presence of P-loop anchors within several GTPases and ATPases suggesting their evolutionary conservation.


Asunto(s)
Simulación de Dinámica Molecular , Factor Tu de Elongación Peptídica/química , Sitios de Unión , Entropía , Escherichia coli/metabolismo , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Enlace de Hidrógeno , Cinética , Mutagénesis , Factor Tu de Elongación Peptídica/genética , Factor Tu de Elongación Peptídica/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA