Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
New Phytol ; 242(3): 1363-1376, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38450804

RESUMEN

Polyploidy is an important evolutionary force, yet epigenetic mechanisms, such as DNA methylation, that regulate genome-wide expression of duplicated genes remain largely unknown. Here, we use Tragopogon (Asteraceae) as a model system to discover patterns and temporal dynamics of DNA methylation in recently formed polyploids. The naturally occurring allotetraploid Tragopogon miscellus formed in the last 95-100 yr from parental diploids Tragopogon dubius and T. pratensis. We profiled the DNA methylomes of these three species using whole-genome bisulfite sequencing. Genome-wide methylation levels in T. miscellus were intermediate between its diploid parents. However, nonadditive CG and CHG methylation occurred in transposable elements (TEs), with variation among TE types. Most differentially methylated regions (DMRs) showed parental legacy, but some novel DMRs were detected in the polyploid. Differentially methylated genes (DMGs) were also identified and characterized. This study provides the first assessment of both overall and locus-specific patterns of DNA methylation in a recent natural allopolyploid and shows that novel methylation variants can be generated rapidly after polyploid formation. Together, these results demonstrate that mechanisms to regulate duplicate gene expression may arise soon after allopolyploid formation and that these mechanisms vary among genes.


Asunto(s)
Asteraceae , Tragopogon , Tragopogon/genética , Asteraceae/genética , Metilación de ADN/genética , Poliploidía , Genoma de Planta
2.
Mol Phylogenet Evol ; 192: 108014, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38199595

RESUMEN

The Scrub Mint clade(Lamiaceae) provides a unique system for investigating the evolutionary processes driving diversification in the North American Coastal Plain from both a systematic and biogeographic context. The clade comprisesDicerandra, Conradina, Piloblephis, Stachydeoma, and four species of the broadly defined genus Clinopodium(Mentheae; Lamiaceae), almost all of which are endemic to the North American Eastern Coastal Plain. Most species of this clade are threatened or endangered and restricted to sandhill or a mosaic of scrub habitats. We analyzed relationships in this clade to understand the evolution of the group and identify evolutionary mechanisms acting on the clade, with important implications for conservation. We used a target-capture method to sequence and analyze 238 nuclear loci across all species of scrub mints, reconstructed the phylogeny, and calculated gene tree concordance, gene tree estimation error, and reticulation indices for every node in the tree using ML methods. Phylogenetic networks were used to determine reticulation events. Our nuclear phylogenetic estimates were consistent with previous results, while greatly increasing the robustness of taxon sampling. The phylogeny resolved the full relationship between Dicerandra and Conradina and the less-studied members of the clade (Piloblephis, Stachydeoma, Clinopodium spp.). We found hotspots of gene tree discordance and reticulation throughout the tree, especially in perennial Dicerandra. Several instances of reticulation events were uncovered between annual and perennial Dicerandra, and within the Conradina + allies clade. Incomplete lineage sorting also likely contributed to phylogenetic discordance. These results clarify phylogenetic relationships in the clade and provide insight on important evolutionary drivers in the clade, such as hybridization. General relationships in the group were confirmed, while the large amount of gene tree discordance is likely due to reticulation across the phylogeny.


Asunto(s)
Lamiaceae , Mentha , Filogenia , Lamiaceae/genética , Mentha/genética , Análisis de Secuencia de ADN , Biodiversidad
3.
BMC Biol ; 19(1): 232, 2021 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-34711223

RESUMEN

BACKGROUND: Flowering plants (angiosperms) are dominant components of global terrestrial ecosystems, but phylogenetic relationships at the familial level and above remain only partially resolved, greatly impeding our full understanding of their evolution and early diversification. The plastome, typically mapped as a circular genome, has been the most important molecular data source for plant phylogeny reconstruction for decades. RESULTS: Here, we assembled by far the largest plastid dataset of angiosperms, composed of 80 genes from 4792 plastomes of 4660 species in 2024 genera representing all currently recognized families. Our phylogenetic tree (PPA II) is essentially congruent with those of previous plastid phylogenomic analyses but generally provides greater clade support. In the PPA II tree, 75% of nodes at or above the ordinal level and 78% at or above the familial level were resolved with high bootstrap support (BP ≥ 90). We obtained strong support for many interordinal and interfamilial relationships that were poorly resolved previously within the core eudicots, such as Dilleniales, Saxifragales, and Vitales being resolved as successive sisters to the remaining rosids, and Santalales, Berberidopsidales, and Caryophyllales as successive sisters to the asterids. However, the placement of magnoliids, although resolved as sister to all other Mesangiospermae, is not well supported and disagrees with topologies inferred from nuclear data. Relationships among the five major clades of Mesangiospermae remain intractable despite increased sampling, probably due to an ancient rapid radiation. CONCLUSIONS: We provide the most comprehensive dataset of plastomes to date and a well-resolved phylogenetic tree, which together provide a strong foundation for future evolutionary studies of flowering plants.


Asunto(s)
Magnoliopsida , Núcleo Celular , Ecosistema , Humanos , Magnoliopsida/genética , Filogenia , Plastidios
4.
Plant Biotechnol J ; 19(3): 430-447, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33484606

RESUMEN

Free-living cyanobacteria were entrapped by eukaryotic cells ~2 billion years ago, ultimately giving rise to chloroplasts. After a century of debate, the presence of chloroplast DNA was demonstrated in the 1960s. The first chloroplast genomes were sequenced in the 1980s, followed by ~100 vegetable, fruit, cereal, beverage, oil and starch/sugar crop chloroplast genomes in the past three decades. Foreign genes were expressed in isolated chloroplasts or intact plant cells in the late 1980s and stably integrated into chloroplast genomes, with typically maternal inheritance shown in the 1990s. Since then, chloroplast genomes conferred the highest reported levels of tolerance or resistance to biotic or abiotic stress. Although launching products with agronomic traits in important crops using this concept has been elusive, commercial products developed include enzymes used in everyday life from processing fruit juice, to enhancing water absorption of cotton fibre or removal of stains as laundry detergents and in dye removal in the textile industry. Plastid genome sequences have revealed the framework of green plant phylogeny as well as the intricate history of plastid genome transfer events to other eukaryotes. Discordant historical signals among plastid genes suggest possible variable constraints across the plastome and further understanding and mitigation of these constraints may yield new opportunities for bioengineering. In this review, we trace the evolutionary history of chloroplasts, status of autonomy and recent advances in products developed for everyday use or those advanced to the clinic, including treatment of COVID-19 patients and SARS-CoV-2 vaccine.


Asunto(s)
COVID-19 , Genoma del Cloroplasto , Vacunas contra la COVID-19 , Cloroplastos/genética , Evolución Molecular , Genoma del Cloroplasto/genética , Genoma de Planta , Humanos , Filogenia , SARS-CoV-2
5.
Am J Bot ; 107(5): 790-805, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32406108

RESUMEN

PREMISE: Discordance between nuclear and organellar phylogenies (cytonuclear discordance) is a well-documented phenomenon at shallow evolutionary levels but has been poorly investigated at deep levels of plant phylogeny. Determining the extent of cytonuclear discordance across major plant lineages is essential not only for elucidating evolutionary processes, but also for evaluating the currently used framework of plant phylogeny, which is largely based on the plastid genome. METHODS: We present a phylogenomic examination of a major angiosperm clade (Asteridae) based on sequence data from the nuclear, plastid, and mitochondrial genomes as a means of evaluating currently accepted relationships inferred from the plastome and exploring potential sources of genomic conflict in this group. RESULTS: We recovered at least five instances of well-supported cytonuclear discordance concerning the placements of major asterid lineages (i.e., Ericales, Oncothecaceae, Aquifoliales, Cassinopsis, and Icacinaceae). We attribute this conflict to a combination of incomplete lineage sorting and hybridization, the latter supported in part by previously inferred whole-genome duplications. CONCLUSIONS: Our results challenge several long-standing hypotheses of asterid relationships and have implications for morphological character evolution and for the importance of ancient whole-genome duplications in early asterid evolution. These findings also highlight the value of reevaluating broad-scale angiosperm and green-plant phylogeny with nuclear genomic data.


Asunto(s)
Genoma de Plastidios , Magnoliopsida/genética , Filogenia , Plastidios , Árboles
6.
Am J Bot ; 107(6): 895-909, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32519354

RESUMEN

PREMISE: Recent advances in generating large-scale phylogenies enable broad-scale estimation of species diversification. These now common approaches typically are characterized by (1) incomplete species coverage without explicit sampling methodologies and/or (2) sparse backbone representation, and usually rely on presumed phylogenetic placements to account for species without molecular data. We used empirical examples to examine the effects of incomplete sampling on diversification estimation and provide constructive suggestions to ecologists and evolutionary biologists based on those results. METHODS: We used a supermatrix for rosids and one well-sampled subclade (Cucurbitaceae) as empirical case studies. We compared results using these large phylogenies with those based on a previously inferred, smaller supermatrix and on a synthetic tree resource with complete taxonomic coverage. Finally, we simulated random and representative taxon sampling and explored the impact of sampling on three commonly used methods, both parametric (RPANDA and BAMM) and semiparametric (DR). RESULTS: We found that the impact of sampling on diversification estimates was idiosyncratic and often strong. Compared to full empirical sampling, representative and random sampling schemes either depressed or inflated speciation rates, depending on methods and sampling schemes. No method was entirely robust to poor sampling, but BAMM was least sensitive to moderate levels of missing taxa. CONCLUSIONS: We suggest caution against uncritical modeling of missing taxa using taxonomic data for poorly sampled trees and in the use of summary backbone trees and other data sets with high representative bias, and we stress the importance of explicit sampling methodologies in macroevolutionary studies.


Asunto(s)
Evolución Biológica , Filogenia
7.
Am J Bot ; 107(12): 1736-1748, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33280088

RESUMEN

PREMISE: Large disjunctions in species distributions provide excellent opportunities to study processes that shape biogeographic patterns. One such disjunction is the eastern Asia-eastern North America (EA-ENA) floristic disjunction. For many genera with this disjunction, species richness is greater in EA than in ENA; this pattern has been attributed, in part, to higher rates of molecular evolution and speciation in EA. Longer branch lengths have been found in some EA clades, relative to their ENA sister clades, suggesting that the EA lineages have evolved at a higher rate, possibly due to environmental heterogeneity, potentially contributing to the species richness anomaly. METHODS: To evaluate whether rates of molecular evolution are elevated in EA relative to ENA, we used transcriptomes from species in 11 genera displaying this disjunction. Rates of molecular evolution were estimated for up to 385 orthologous nuclear loci per genus. RESULTS: No statistically significant differences were identified in pairwise comparisons between EA and ENA sister species, suggesting equal rates of molecular evolution for both species; the data also suggest similar selection pressures in both regions. For larger genera, evidence likewise argues against more species-rich clades having higher molecular evolutionary rates, regardless of region. Our results suggest that genes across multiple gene ontology categories are evolving at similar rates under purifying selection in species in both regions. CONCLUSIONS: Our data support the hypothesis that greater species richness in EA than ENA is due to factors other than an overall increase in rates of molecular evolution in EA.


Asunto(s)
Evolución Molecular , Transcriptoma , Asia , Asia Oriental , América del Norte , Filogenia
8.
Am J Bot ; 107(3): 466-476, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32115694

RESUMEN

PREMISE: Plant genomes vary in size and complexity due in part to polyploidization. Latitudinal analyses of polyploidy are biased toward floras of temperate regions, with much less research done in the tropics. Lippia alba has been described as a tropical polyploid complex with diploid, triploid, tetraploid, and hexaploid accessions. However, no data regarding relationships among the ploidal levels and their origins have been reported. Our goals are to clarify the relationships among accessions of Lippia alba and the origins of each ploidal level. METHODS: We investigated 98 samples representing all five geographical regions of Brazil and all ploidal levels using microsatellite (SSR) allelic variation and DNA sequences of ITS and trnL-F. Nine morphological structures were analyzed from 33 herbarium samples, and the chemical compounds of 78 accessions were analyzed by GC-MS. RESULTS: Genetic distance analysis, the alignment block pattern, as well as RAxML and Bayesian trees showed that accessions grouped by ploidal level. The triploids form a well-defined group that originated from a single group of diploids. The tetraploids and hexaploid grouped together in SSR and trnL-F analyses. The recovered groups agree with chemical data and morphology. CONCLUSIONS: The accessions grouped by ploidal level. Only one origin of triploids from a single group of diploids was observed. The tetraploid origin is uncertain; however, it appears to have contributed to the origin of the hexaploid. This framework reveals linkages among the ploidal levels, providing new insights into the evolution of a polyploid complex of tropical plants.


Asunto(s)
Lippia , Teorema de Bayes , Brasil , Humanos , Filogenia , Poliploidía
9.
Pharmacogenomics J ; 19(3): 295-304, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30237584

RESUMEN

Resistant hypertension (RHTN), defined as uncontrolled blood pressure (BP) ≥ 140/90 using three or more drugs or controlled BP (<140/90) using four or more drugs, is associated with adverse outcomes, including decline in kidney function. We conducted a genome-wide association analysis in 1194 White and Hispanic participants with hypertension and coronary artery disease from the INternational VErapamil-SR Trandolapril STudy-GENEtic Substudy (INVEST-GENES). Top variants associated with RHTN at p < 10-4 were tested for replication in 585 White and Hispanic participants with hypertension and subcortical strokes from the Secondary Prevention of Subcortical Strokes GENEtic Substudy (SPS3-GENES). A genetic risk score for RHTN was created by summing the risk alleles of replicated RHTN signals. rs11749255 in MSX2 was associated with RHTN in INVEST (odds ratio (OR) (95% CI) = 1.50 (1.2-1.8), p = 7.3 × 10-5) and replicated in SPS3 (OR = 2.0 (1.4-2.8), p = 4.3 × 10-5), with genome-wide significance in meta-analysis (OR = 1.60 (1.3-1.9), p = 3.8 × 10-8). Other replicated signals were in IFLTD1 and PTPRD. IFLTD1 rs6487504 was associated with RHTN in INVEST (OR = 1.90 (1.4-2.5), p = 1.1 × 10-5) and SPS3 (OR = 1.70 (1.2-2.5), p = 4 × 10-3). PTPRD rs324498, a previously reported RHTN signal, was among the top signals in INVEST (OR = 1.60 (1.3-2.0), p = 3.4 × 10-5) and replicated in SPS3 (OR = 1.60 (1.1-2.4), one-sided p = 0.005). Participants with the highest number of risk alleles were at increased risk of RHTN compared to participants with a lower number (p-trend = 1.8 × 10-15). Overall, we identified and replicated associations with RHTN in the MSX2, IFLTD1, and PTPRD regions, and combined these associations to create a genetic risk score.


Asunto(s)
Hipertensión/genética , Polimorfismo de Nucleótido Simple/genética , Anciano , Antihipertensivos/uso terapéutico , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/genética , Femenino , Estudio de Asociación del Genoma Completo/métodos , Hispánicos o Latinos/genética , Humanos , Hipertensión/tratamiento farmacológico , Masculino , Persona de Mediana Edad , Oportunidad Relativa , Factores de Riesgo , Verapamilo/uso terapéutico , Población Blanca/genética
10.
BMC Plant Biol ; 18(1): 208, 2018 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-30249188

RESUMEN

BACKGROUND: Tetrastigma hemsleyanum is of great medicinal importance and used as a model system to address the evolutionary history of warm-temperate evergreen (WTE) forest biomes in East Asia over Neogene time scales. However, further studies on the neutral and adaptive divergence processes of T. hemsleyanum are currently impeded by a lack of genomic resources. In this study, we de novo assembled and annotated a reference transcriptome for two cpDNA lineages (Central-South-East vs. Southwest) of T. hemsleyanum. We further used comparative genomic and multilocus coalescent approaches to investigate the tempo and mode of lineage diversification in T. hemsleyanum. RESULTS: A total of 52,838 and 65,197 unigenes with an N50 of 1,667 and 1,841 bp for Central-South-East (CSE) and Southwest (SW) lineages, respectively, were recovered, and 6,692 putative orthologs were identified between the two lineages. Estimation of Ka/Ks ratios for these orthologs revealed that ten genes had Ka/Ks values significantly greater than 0.5 (P < 0.05), whereas 2,099 (Ka/Ks < 0.5, P < 0.05) were inferred to be under purifying selection. Based on three bioinformatic strategies, we identified a total of 1,018 single-copy nuclear genes (SCNGs) from the orthologs. We successfully designed eight nuclear gene primer pairs with high intraspecific variation (e.g. hT = 0.923, πT = 1.68×10-3), when surveyed across a subset of T. hemsleyanum individuals. Concordant with the previous cpDNA data, the haplotype networks constructed for most nuclear gene loci clearly identified the two lineages. A multilocus coalescence analysis suggested that the separation between the two lineages appears to have occurred during the mid-Pliocene. Despite their ancient divergence, both lineages experienced expansion at rather localized scales and have continued to exchange genes at a low rate. CONCLUSIONS: This study demonstrated the utility of transcriptome sequencing as a basis for SCNG development in non-model species and the advantages of integrating multiple nuclear loci for phylogeographic and phylogenetic studies.


Asunto(s)
Evolución Biológica , Perfilación de la Expresión Génica , Vitaceae/genética , Adaptación Biológica/genética , ADN de Cloroplastos , Etiquetas de Secuencia Expresada , Anotación de Secuencia Molecular , Tipificación de Secuencias Multilocus , Proteínas de Plantas/genética , Vitaceae/fisiología
11.
Am J Bot ; 105(3): 291-301, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29603143

RESUMEN

PREMISE OF THE STUDY: For the past one billion years, green plants (Viridiplantae) have dominated global ecosystems, yet many key branches in their evolutionary history remain poorly resolved. Using the largest analysis of Viridiplantae based on plastid genome sequences to date, we examined the phylogeny and implications for morphological evolution at key nodes. METHODS: We analyzed amino acid sequences from protein-coding genes from complete (or nearly complete) plastomes for 1879 taxa, including representatives across all major clades of Viridiplantae. Much of the data used was derived from transcriptomes from the One Thousand Plants Project (1KP); other data were taken from GenBank. KEY RESULTS: Our results largely agree with previous plastid-based analyses. Noteworthy results include (1) the position of Zygnematophyceae as sister to land plants (Embryophyta), (2) a bryophyte clade (hornworts, mosses + liverworts), (3) Equisetum + Psilotaceae as sister to Marattiales + leptosporangiate ferns, (4) cycads + Ginkgo as sister to the remaining extant gymnosperms, within which Gnetophyta are placed within conifers as sister to non-Pinaceae (Gne-Cup hypothesis), and (5) Amborella, followed by water lilies (Nymphaeales), as successive sisters to all other extant angiosperms. Within angiosperms, there is support for Mesangiospermae, a clade that comprises magnoliids, Chloranthales, monocots, Ceratophyllum, and eudicots. The placements of Ceratophyllum and Dilleniaceae remain problematic. Within Pentapetalae, two major clades (superasterids and superrosids) are recovered. CONCLUSIONS: This plastid data set provides an important resource for elucidating morphological evolution, dating divergence times in Viridiplantae, comparisons with emerging nuclear phylogenies, and analyses of molecular evolutionary patterns and dynamics of the plastid genome.


Asunto(s)
Secuencia de Aminoácidos , Evolución Biológica , Genes de Plantas , Genoma de Plastidios , Filogenia , Viridiplantae/genética , Aminoácidos , Briófitas/genética , Clasificación , Cycadopsida/genética , ADN de Plantas/análisis , Conjuntos de Datos como Asunto , Evolución Molecular , Helechos/genética , Genoma de Planta , Genómica/métodos , Ginkgo biloba/genética , Gnetophyta/genética , Magnoliopsida/genética , Proteínas de Plantas/genética , Plastidios/genética
12.
Mol Phylogenet Evol ; 111: 231-247, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28390909

RESUMEN

Hybridization is a frequent and important force in plant evolution. Next-generation sequencing (NGS) methods offer new possibilities for clade resolution and ambitious sampling of gene genealogies, yet difficulty remains in detecting deep reticulation events using currently available methods. We reconstructed the phylogeny of diploid representatives of Amaryllidaceae tribe Hippeastreae to test the hypothesis of ancient hybridizations preceding the radiation of its major subclade, Hippeastrinae. Through hybrid enrichment of DNA libraries and NGS, we obtained data for 18 nuclear loci through a curated assembly approach and nearly complete plastid genomes for 35 ingroup taxa plus 5 outgroups. Additionally, we obtained alignments for 39 loci through an automated assembly algorithm. These data were analyzed with diverse phylogenetic methods, including concatenation, coalescence-based species tree estimation, Bayesian concordance analysis, and network reconstructions, to provide insights into the evolutionary relationships of Hippeastreae. Causes for gene tree heterogeneity and cytonuclear discordance were examined through a Bayesian posterior predictive approach (JML) and coalescent simulations. Two major clades were found, Hippeastrinae and Traubiinae, as previously reported. Our results suggest the presence of two major nuclear lineages in Hippeastrinae characterized by different chromosome numbers: (1) Tocantinia and Hippeastrum with 2n=22, and (2) Eithea, Habranthus, Rhodophiala, and Zephyranthes mostly with 2n=12, 14, and 18. Strong cytonuclear discordance was confirmed in Hippeastrinae, and a network scenario with at least six hybridization events is proposed to reconcile nuclear and plastid signals, along a backbone that may also have been affected by incomplete lineage sorting at the base of each major subclade.


Asunto(s)
Amaryllidaceae/anatomía & histología , Amaryllidaceae/clasificación , Diploidia , Filogenia , Teorema de Bayes , Núcleo Celular/genética , Simulación por Computador , Sitios Genéticos , Humanos , Hibridación Genética , Funciones de Verosimilitud , Plastidios/genética , Alineación de Secuencia , Análisis de Secuencia de ADN
13.
Proc Natl Acad Sci U S A ; 111(45): E4859-68, 2014 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-25355905

RESUMEN

Reconstructing the origin and evolution of land plants and their algal relatives is a fundamental problem in plant phylogenetics, and is essential for understanding how critical adaptations arose, including the embryo, vascular tissue, seeds, and flowers. Despite advances in molecular systematics, some hypotheses of relationships remain weakly resolved. Inferring deep phylogenies with bouts of rapid diversification can be problematic; however, genome-scale data should significantly increase the number of informative characters for analyses. Recent phylogenomic reconstructions focused on the major divergences of plants have resulted in promising but inconsistent results. One limitation is sparse taxon sampling, likely resulting from the difficulty and cost of data generation. To address this limitation, transcriptome data for 92 streptophyte taxa were generated and analyzed along with 11 published plant genome sequences. Phylogenetic reconstructions were conducted using up to 852 nuclear genes and 1,701,170 aligned sites. Sixty-nine analyses were performed to test the robustness of phylogenetic inferences to permutations of the data matrix or to phylogenetic method, including supermatrix, supertree, and coalescent-based approaches, maximum-likelihood and Bayesian methods, partitioned and unpartitioned analyses, and amino acid versus DNA alignments. Among other results, we find robust support for a sister-group relationship between land plants and one group of streptophyte green algae, the Zygnematophyceae. Strong and robust support for a clade comprising liverworts and mosses is inconsistent with a widely accepted view of early land plant evolution, and suggests that phylogenetic hypotheses used to understand the evolution of fundamental plant traits should be reevaluated.


Asunto(s)
Evolución Molecular , Genoma de Planta/fisiología , Filogenia , Carácter Cuantitativo Heredable , Streptophyta/fisiología , Transcriptoma/fisiología , ADN de Plantas/genética , ADN de Plantas/metabolismo , Perfilación de la Expresión Génica , Alineación de Secuencia , Streptophyta/clasificación
14.
Mol Phylogenet Evol ; 83: 86-98, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25479063

RESUMEN

Saxifragaceae (Saxifragales) contain approximately 640 species and 33 genera, about half of which are monotypic. Due to factors such as morphological stasis, convergent morphological evolution, and disjunct distributions, relationships within Saxifragaceae have historically been troublesome. The family occurs primarily in mountainous regions of the Northern Hemisphere, with the highest generic and species diversity in western North America, but disjunct taxa are known from southern South America. Here, we integrate broad gene (56 loci) and taxon (223 species) sampling strategies, both the most comprehensive to date within Saxifragaceae, with fossil calibrations and geographical distribution data to address relationships, divergence times, and historical biogeography among major lineages of Saxifragaceae. Two previously recognized main clades, the heucheroids (eight groups+Saniculiphyllum) and saxifragoids (Saxifraga s.s.), were re-affirmed by our phylogenetic analyses. Relationships among the eight heucheroid groups, as well as the phylogenetic position of Saniculiphyllum within the heucheroids, were resolved with mostly high support. Divergence time estimates indicate that Saxifragaceae began to diversify ca. 38.37 million years ago (Mya; 95% HPD=30.99-46.11Mya) in the Mid-Late Eocene, and that the two major lineages, the heucheroids and saxifragoids, began to diversify approximately 30.04Mya (95% HPD=23.87-37.15Mya) and 30.85 Mya (95% HPD=23.47-39.33Mya), respectively. We reconstructed ancestral geographic areas using statistical dispersal-vicariance (S-DIVA). These analyses indicate several radiations within Saxifragaceae: one in eastern Asia and multiple radiations in western North America. Our results also demonstrate that large amounts of sequence data coupled with broad taxon sampling can help resolve clade relationships that have thus far seemed intractable.


Asunto(s)
Evolución Biológica , Filogenia , Saxifragaceae/clasificación , Teorema de Bayes , ADN de Cloroplastos/genética , ADN de Plantas/genética , ADN Ribosómico/genética , Asia Oriental , Fósiles , Geografía , Funciones de Verosimilitud , Modelos Genéticos , América del Norte , Alineación de Secuencia , Análisis de Secuencia de ADN
15.
Syst Biol ; 63(3): 368-82, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24391149

RESUMEN

Since the advent of molecular phylogenetics more than 25 years ago, a major goal of plant systematists has been to discern the root of the angiosperms. Although most studies indicate that Amborella trichopoda is sister to all remaining extant flowering plants, support for this position has varied with respect to both the sequence data sets and analyses employed. Recently, Goremykin et al. (2013) questioned the "Amborella-sister hypothesis" using a "noise-reduction" approach and reported a topology with Amborella + Nymphaeales (water lilies) sister to all remaining angiosperms. Through a series of analyses of both plastid genomes and mitochondrial genes, we continue to find mostly strong support for the Amborella-sister hypothesis and offer a rebuttal of Goremykin et al. (2013). The major tenet of Goremykin et al. is that the Amborella-sister position is determined by noisy data--that is, characters with high rates of change and lacking true phylogenetic signal. To investigate the signal in these noisy data further, we analyzed the discarded characters from their noise-reduced alignments. We recovered a tree identical to that of the currently accepted angiosperm framework, including the position of Amborella as sister to all other angiosperms, as well as all other major clades. Thus, the signal in the "noisy" data is consistent with that of our complete data sets--arguing against the use of their noise-reduction approach. We also determined that one of the alignments presented by Goremykin et al. yields results at odds with their central claim--their data set actually supports Amborella as sister to all other angiosperms, as do larger plastid data sets we present here that possess more complete taxon sampling both within the monocots and for angiosperms in general. Previous unpartitioned, multilocus analyses of mitochondrial DNA (mtDNA) data have provided the strongest support for Amborella + Nymphaeales as sister to other angiosperms. However, our analysis of third codon positions from mtDNA sequence data also supports the Amborella-sister hypothesis. Finally, we challenge the conclusion of Goremykin et al. that the first flowering plants were aquatic and herbaceous, reasserting that even if Amborella + water lilies, or water lilies alone, are sister to the rest of the angiosperms, the earliest angiosperms were not necessarily aquatic and/or herbaceous.


Asunto(s)
Magnoliopsida/clasificación , Magnoliopsida/genética , Filogenia
16.
Am J Bot ; 102(6): 973-82, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26101421

RESUMEN

PREMISE OF THE STUDY: Whereas population genetic studies have examined allopolyploids, comparable studies of naturally occurring autopolyploids remain rare. To address fundamental questions regarding autopolyploidy, we undertook a detailed population genetic study of one of the classic examples of autopolyploidy, Galax urceolata (Diapensiaceae), which comprises diploid, triploid, and autotetraploid cytotypes. Galax is endemic to the Appalachian Mountains, the adjacent piedmont, sandhills, and coastal plain and represents perhaps the most widely known example of autopolyploidy in nature. METHODS: Flow cytometry was used to diagnose ploidal level of ∼1000 individuals across 71 populations. We used 10 microsatellite markers to examine genetic variation across the geographic range of Galax and assessed multiple origins though comparisons of diploid, triploid, and tetraploid accessions using multiple analytical approaches. KEY RESULTS: Tetraploids had higher levels of heterozygosity than diploids did. Genetic variation in diploid and tetraploid Galax is geographically structured among the ecoregions of the southeastern United States. Autotetraploidy in Galax urceolata has occurred independently at least 46 times, with triploidy having occurred a minimum of 31 times. CONCLUSIONS: Genetic differentiation among ecoregions suggests historical patterns of local adaptation. The numerous independent origins of tetraploid Galax reported here are among the highest frequencies of independent polyploidizations ever reported for any polyploid (auto- or allopolyploid).


Asunto(s)
Variación Genética , Genética de Población , Geografía , Magnoliopsida/genética , Poliploidía , Región de los Apalaches , Teorema de Bayes , Análisis por Conglomerados , Funciones de Verosimilitud , Filogenia
17.
BMC Evol Biol ; 14: 23, 2014 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-24533922

RESUMEN

BACKGROUND: Next-generation sequencing has provided a wealth of plastid genome sequence data from an increasingly diverse set of green plants (Viridiplantae). Although these data have helped resolve the phylogeny of numerous clades (e.g., green algae, angiosperms, and gymnosperms), their utility for inferring relationships across all green plants is uncertain. Viridiplantae originated 700-1500 million years ago and may comprise as many as 500,000 species. This clade represents a major source of photosynthetic carbon and contains an immense diversity of life forms, including some of the smallest and largest eukaryotes. Here we explore the limits and challenges of inferring a comprehensive green plant phylogeny from available complete or nearly complete plastid genome sequence data. RESULTS: We assembled protein-coding sequence data for 78 genes from 360 diverse green plant taxa with complete or nearly complete plastid genome sequences available from GenBank. Phylogenetic analyses of the plastid data recovered well-supported backbone relationships and strong support for relationships that were not observed in previous analyses of major subclades within Viridiplantae. However, there also is evidence of systematic error in some analyses. In several instances we obtained strongly supported but conflicting topologies from analyses of nucleotides versus amino acid characters, and the considerable variation in GC content among lineages and within single genomes affected the phylogenetic placement of several taxa. CONCLUSIONS: Analyses of the plastid sequence data recovered a strongly supported framework of relationships for green plants. This framework includes: i) the placement of Zygnematophyceace as sister to land plants (Embryophyta), ii) a clade of extant gymnosperms (Acrogymnospermae) with cycads + Ginkgo sister to remaining extant gymnosperms and with gnetophytes (Gnetophyta) sister to non-Pinaceae conifers (Gnecup trees), and iii) within the monilophyte clade (Monilophyta), Equisetales + Psilotales are sister to Marattiales + leptosporangiate ferns. Our analyses also highlight the challenges of using plastid genome sequences in deep-level phylogenomic analyses, and we provide suggestions for future analyses that will likely incorporate plastid genome sequence data for thousands of species. We particularly emphasize the importance of exploring the effects of different partitioning and character coding strategies.


Asunto(s)
Chlorophyta/genética , Genoma de Plastidios , Magnoliopsida/genética , Plastidios/genética , Viridiplantae/genética , Chlorophyta/clasificación , Equisetum/clasificación , Equisetum/genética , Magnoliopsida/clasificación , Datos de Secuencia Molecular , Filogenia , Viridiplantae/clasificación
18.
Proc Natl Acad Sci U S A ; 107(52): 22570-5, 2010 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-21149731

RESUMEN

The origin and rapid diversification of the angiosperms (Darwin's "Abominable Mystery") has engaged generations of researchers. Here, we examine the floral genetic programs of phylogenetically pivotal angiosperms (water lily, avocado, California poppy, and Arabidopsis) and a nonflowering seed plant (a cycad) to obtain insight into the origin and subsequent evolution of the flower. Transcriptional cascades with broadly overlapping spatial domains, resembling the hypothesized ancestral gymnosperm program, are deployed across morphologically intergrading organs in water lily and avocado flowers. In contrast, spatially discrete transcriptional programs in distinct floral organs characterize the more recently derived angiosperm lineages represented by California poppy and Arabidopsis. Deep evolutionary conservation in the genetic programs of putatively homologous floral organs traces to those operating in gymnosperm reproductive cones. Female gymnosperm cones and angiosperm carpels share conserved genetic features, which may be associated with the ovule developmental program common to both organs. However, male gymnosperm cones share genetic features with both perianth (sterile attractive and protective) organs and stamens, supporting the evolutionary origin of the floral perianth from the male genetic program of seed plants.


Asunto(s)
Flores/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Magnoliopsida/genética , Arabidopsis/genética , Análisis por Conglomerados , Cycas/genética , Evolución Molecular , Genes de Plantas/genética , Variación Genética , Magnoliopsida/clasificación , Nuphar/genética , Persea/genética , Filogenia , Especificidad de la Especie , Zamiaceae/genética
19.
Plant Divers ; 45(1): 27-35, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36876316

RESUMEN

The underlying causes of biodiversity disparities among geographic regions have long been a fundamental theme in ecology and evolution. However, the patterns of phylogenetic diversity (PD) and phylogenetic beta diversity (PBD) of congeners that are disjunctly distributed between eastern Asia-eastern North America (EA-ENA disjuncts) and their associated factors remain unknown. Here we investigated the standardized effect size of PD (SES-PD), PBD, and potentially associated factors in 11 natural mixed forest sites (five in EA and six in ENA) where abundant EA-ENA disjuncts occur. We found that the disjuncts in ENA possessed higher SES-PD than those in EA at the continental scale (1.96 vs -1.12), even though the number of disjunct species in ENA is much lower than in EA (128 vs 263). SES-PD of the EA-ENA disjuncts tended to decrease with increasing latitude in 11 sites. The latitudinal diversity gradient of SES-PD was stronger in EA sites than in ENA sites. Based on the unweighted unique fraction metric (UniFrac) distance and the phylogenetic community dissimilarity, PBD showed that the two northern sites in EA were more similar to the six-site ENA group than to the remaining southern EA sites. Based on the standardized effect size of mean pairwise distances (SES-MPD), nine of eleven studied sites showed a neutral community structure (-1.96 ≤ SES-MPD ≤ 1.96). Both Pearson's r and structural equation modeling suggested that SES-PD of the EA-ENA disjuncts was mostly associated with mean divergence time. Moreover, SES-PD of the EA-ENA disjuncts was positively correlated with temperature-related climatic factors, although negatively correlated with mean diversification rate and community structure. By applying approaches from phylogenetics and community ecology, our work sheds light on historical patterns of the EA-ENA disjunction and paves the way for further research.

20.
Mol Phylogenet Evol ; 64(2): 357-67, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22548837

RESUMEN

Saniculiphyllum, a monotypic genus distributed in Southwest China, was thought to be extinct before our recent rediscovery. The taxonomic position of this genus has been enigmatic ever since its publication. It was originally treated as the only member of a distinct tribe Saniculiphylleae in the family Saxifragaceae. Some proposed a new family, Saniculophyllaceae, to accommodate this genus, although its affinities are clearly with members of Saxifragaceae. Here we analyzed six DNA regions, the nuclear ribosomal ITS and 26S rDNA and the plastid rbcL, matK, trnL-trnF, psbA-trnH genes, spacers, and intron to explore the phylogenetic position of Saniculiphyllum within Saxifragaceae. The combined nuclear and chloroplast dataset includes 63 ingroup species, representing all genera but Hieronymusia in the family. Results from likelihood, parsimony and Bayesian phylogenetic methods corroborate earlier results. Two clades of Saxifragaceae, the Heucheroid and Saxifragoid clades, were recovered. The topologies obtained from different analyses confirm the placement of Saniculiphyllum in Saxifragaceae, but our analyses reveal that Saniculiphyllum is embedded within the large Heucheroid clade. However, the closest relatives of Saniculiphyllum within the Heucheroid clade remain unclear. Combined with morphological data, our results suggest that Saniculiphyllum should best be regarded as a highly distinctive lineage within the Heucheroid clade of Saxifragaceae. Morphological novelties and conservation status of Saniculiphyllum are also presented.


Asunto(s)
Núcleo Celular/genética , ADN de Plantas/genética , Filogenia , Plastidios/genética , Saxifragaceae/clasificación , Saxifragaceae/genética , Teorema de Bayes , China , Cloroplastos/genética , Conservación de los Recursos Naturales , ADN Espaciador Ribosómico/genética , Evolución Molecular , Intrones , Alineación de Secuencia , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA