Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Int J Mol Sci ; 24(9)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37175620

RESUMEN

Alzheimer's disease (AD) represents one of the most challenging disorders, and despite having been widely studied since its first identification, resolutive treatments are still far out of reach [...].


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides
2.
Int J Mol Sci ; 24(15)2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37569831

RESUMEN

Heat shock protein 60 (Hsp60) is a member of the chaperonin family of heat shock proteins (HSPs), primarily found in the mitochondrial matrix. As a molecular chaperone, Hsp60 plays an essential role in mediating protein folding and assembly, and together with the co-chaperon Hsp10, it is thought to maintain protein homeostasis. Recently, it has been found to localize in non-canonical, extra-mitochondrial sites such as cell membranes or extracellular fluids, particularly in pathological conditions. Starting from its biological function, this review aims to provide a comprehensive understanding of the potential involvement of Hsp60 in Alzheimer's disease (AD) and Type II Diabetes Mellitus (T2DM), which are known to share impaired key pathways and molecular dysfunctions. Fragmentary data reported in the literature reveal interesting links between the altered expression level or localization of this chaperonin and several disease conditions. The present work offers an overview of the past and more recent knowledge about Hsp60 and its role in the most important cellular processes to shed light on neuronal Hsp60 as a potential common target for both pathologies. The absence of any effective cure for AD patients makes the identification of a new molecular target a promising path by which to move forward in the development of new drugs and/or repositioning of therapies already used for T2DM.

3.
Bioorg Med Chem ; 50: 116478, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34695708

RESUMEN

Prodrugs are ingenious derivatives of therapeutic agents designed to improve the pharmacokinetic profile of the drug. Here, we report an efficient and regioselective solid phase approach for obtaining new prodrugs of 9″-silybins conjugated with 3'-ribonucleotide units (uridine and adenosine) as pro-moieties. Uridine and adenosine conjugates were obtained in good yields (41-50%), beginning with silibinin and its diastereomers (silybin A and silybin B), using a NovaSyn® support functionalized with an ad hoc linker, which allowed selective detachment of only the desired products. As expected, the solubility of both uridine and adenosine conjugates was higher than that of the parental natural product (5 mg/mL and 3 mg/mL for uridine and adenosine, respectively). Our investigations revealed that uridine conjugates were quickly cleaved by RNase A, releasing silybin drugs, even at low enzyme concentrations. No toxic effects were found for any ribonucleotide conjugate on differentiated neuroblastoma SH-SY5Y cells when tested at increasing concentrations. All results strongly encourage further investigations of uridine-silybin prodrugs as potential therapeutic agents for both oral and intravenous administration. The present synthetic approach represents a valuable strategy to the future design of new prodrugs with modified nucleoside pro-moieties to modulate the pharmacokinetics of silybins or different natural products with strong pharmacological activities but poor bioavailability.


Asunto(s)
Adenosina/química , Profármacos/síntesis química , Silibina/síntesis química , Técnicas de Síntesis en Fase Sólida , Uridina/química , Humanos , Estructura Molecular , Profármacos/química , Silibina/química , Solubilidad , Factores de Tiempo , Células Tumorales Cultivadas
4.
Chemistry ; 24(24): 6349-6353, 2018 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-29624764

RESUMEN

Although fibrillar amyloid beta peptide (Aß) aggregates are one of the major hallmarks of Alzheimer's disease, increasing evidence suggests that soluble Aß oligomers are the primary toxic species. Targeting the oligomeric species could represent an effective strategy to interfere with Aß toxicity. In this work, the biological properties of 5[4-(6-O-ß-cyclodextrin)-phenyl],10,15,20-tri(4-hydroxyphenyl)-porphyrin and its zinc complex were tested, as new molecules that interact with Aß and effectively prevent its cytotoxicity. We found that these systems can cross the cell membrane to deliver Aß intracellularly and promote its clearance. Our results provide evidence for the use of cyclodextrin-porphyrin derivatives as a promising strategy to target amyloid aggregation.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/efectos de los fármacos , Ciclodextrinas/farmacología , Citotoxinas/farmacología , Porfirinas/farmacología , Zinc/química , beta-Ciclodextrinas/farmacología , Péptidos beta-Amiloides/química , Humanos , Cinética
5.
Inorg Chem ; 57(5): 2365-2368, 2018 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-29431435

RESUMEN

We synthesized a new ratiometric fluorescent Cu2+ probe, bearing a morpholine moiety for selective binding to lysosomes and two picolylamine arms for the specific chelation of divalent copper ions. The probe capability to detect lysosomal Cu2+ was demonstrated in human differentiated neuroblastoma cells by confocal microscopy.


Asunto(s)
Quelantes/química , Cobre/química , Colorantes Fluorescentes/química , Lisosomas/química , Neuroblastoma/patología , Imagen Óptica , Diferenciación Celular , Quelantes/síntesis química , Colorantes Fluorescentes/síntesis química , Humanos , Microscopía Confocal , Morfolinas/química , Picolinas/química
6.
Chembiochem ; 17(16): 1541-9, 2016 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-27252026

RESUMEN

The inhibition of amyloid formation is a promising therapeutic approach for the treatment of neurodegenerative diseases. Peptide-based inhibitors, which have been widely investigated, are generally derived from original amyloid sequences. Most interestingly, trehalose, a nonreducing disaccharide of α-glucose, is effective in preventing the aggregation of numerous proteins. We have determined that the development of hybrid compounds could provide new molecules with improved properties that might synergically increase the potency of their single moieties. In this work, the ability of Ac-LPFFD-Th, a C-terminally trehalose-conjugated derivative, to slow down the Aß aggregation process was investigated by means of different biophysical techniques, including thioflavin T fluorescence, dynamic light scattering, ESI-MS, and NMR spectroscopy. Moreover, we demonstrate that Ac-LPFFD-Th modifies the aggregation features of Aß and protects neurons from Aß oligomers' toxic insult.


Asunto(s)
Péptidos beta-Amiloides/antagonistas & inhibidores , Peptidomiméticos/farmacología , Trehalosa/farmacología , Péptidos beta-Amiloides/química , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Estructura Molecular , Neuronas/citología , Neuronas/efectos de los fármacos , Peptidomiméticos/química , Ratas , Trehalosa/química
7.
J Nat Prod ; 78(11): 2704-11, 2015 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-26517378

RESUMEN

Cell-cycle reactivation is a core feature of degenerating neurons in Alzheimer's disease (AD) and Parkinson's disease (PD). A variety of stressors, including ß-amyloid (Aß) in the case of AD, can force neurons to leave quiescence and to initiate an ectopic DNA replication process, leading to neuronal death rather than division. As the primary polymerase (pol) involved in neuronal DNA replication, DNA pol-ß contributes to neuronal death, and DNA pol-ß inhibitors may prove to be effective neuroprotective agents. Currently, specific and highly active DNA pol-ß inhibitors are lacking. Nine putative DNA pol-ß inhibitors were identified in silico by querying the ZINC database, containing more than 35 million purchasable compounds. Following pharmacological evaluation, only 5-methoxyflavone (1) was validated as an inhibitor of DNA pol-ß activity. Cultured primary neurons are a useful model to investigate the neuroprotective effects of potential DNA pol-ß inhibitors, since these neurons undergo DNA replication and death when treated with Aß. Consistent with the inhibition of DNA pol-ß, 5-methoxyflavone (1) reduced the number of S-phase neurons and the ensuing apoptotic death triggered by Aß. 5-Methoxyflavone (1) is the first flavonoid compound able to halt neurodegeneration via a definite molecular mechanism rather than through general antioxidant and anti-inflammatory properties.


Asunto(s)
ADN Polimerasa beta/antagonistas & inhibidores , Flavonas/farmacología , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Enfermedad de Alzheimer/patología , Ciclo Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , División Celular/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Flavonas/química , Humanos , Estructura Molecular , Neuronas/metabolismo , Fármacos Neuroprotectores/química , Enfermedad de Parkinson/patología
8.
ACS Chem Neurosci ; 14(6): 1126-1136, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36857606

RESUMEN

Alzheimer's disease (AD) is the most common cause of dementia, characterized by a spectrum of symptoms associated with memory loss and cognitive decline with deleterious consequences in everyday life. The lack of specific drugs for the treatment and/or prevention of this pathology makes AD an ever-increasing economic and social emergency. Oligomeric species of amyloid-beta (Aß) are recognized as the primary cause responsible for synaptic dysfunction and neuronal degeneration, playing a crucial role in the onset of the pathology. Several studies have been focusing on the use of small molecules and peptides targeting oligomeric species to prevent Aß aggregation and toxicity. Among them, peptide fragments derived from the primary sequence of Aß have also been used to exploit any eventual recognition abilities toward the full-length Aß parent peptide. Here, we test the Aß8-20 fragment which contains the self-recognizing Lys-Leu-Val-Phe-Phe sequence and lacks Arg 5 and Asp 7 and the main part of the C-terminus, key points involved in the aggregation pathway and stabilization of the fibrillary structure of Aß. In particular, by combining chemical and biological techniques, we show that Aß8-20 does not undergo random coil to ß sheet conformational transition, does not form amyloid fibrils by itself, and is not toxic for neuronal cells. Moreover, we demonstrate that Aß8-20 mainly interacts with the 4-11 region of Aß1-42 and inhibits the formation of toxic oligomeric species and Aß fibrils. Finally, our data show that Aß8-20 protects neuron-like cells from Aß1-42 oligomer toxicity. We propose Aß8-20 as a promising drug candidate for the treatment of AD.


Asunto(s)
Enfermedad de Alzheimer , Fármacos Neuroprotectores , Humanos , Enfermedad de Alzheimer/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Péptidos beta-Amiloides/metabolismo , Fragmentos de Péptidos/metabolismo , Amiloide/metabolismo
9.
Curr Neuropharmacol ; 21(9): 2006-2018, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37021419

RESUMEN

BACKGROUND: Ectopic cell cycle reactivation in neurons is associated with neuronal death in Alzheimer's disease. In cultured rodent neurons, synthetic ß-amyloid (Aß) reproduces the neuronal cell cycle re-entry observed in the Alzheimer's brain, and blockade of the cycle prevents Aß-induced neurodegeneration. DNA polymerase-ß, whose expression is induced by Aß, is responsible for the DNA replication process that ultimately leads to neuronal death, but the molecular mechanism(s) linking DNA replication to neuronal apoptosis are presently unknown. AIM: To explore the role of a conserved checkpoint pathway started by DNA replication stress, namely the ATM-ATR/Claspin/Chk-1 pathway, in switching the neuronal response from DNA replication to apoptosis. METHODS: Experiments were carried out in cultured rat cortical neurons challenged with toxic oligomers of Aß protein. RESULTS: Small inhibitory molecules of ATM/ATR kinase or Chk-1 amplified Aß-induced neuronal DNA replication and apoptosis, as they were permissive to the DNA polymerase-ß activity triggered by Aß oligomers. Claspin, i.e., the adaptor protein between ATM/ATR kinase and the downstream Chk-1, was present on DNA replication forks of neurons early after Aß challenge, and decreased at times coinciding with neuronal apoptosis. The caspase-3/7 inhibitor I maintained overtime the amount of Claspin loaded on DNA replication forks and, concomitantly, reduced neuronal apoptosis by holding neurons in the S phase. Moreover, a short phosphopeptide mimicking the Chk-1-binding motif of Claspin was able to prevent Aß-challenged neurons from entering apoptosis. CONCLUSION: We speculate that, in the Alzheimer's brain, Claspin degradation by intervening factors may precipitate the death of neurons engaged into DNA replication.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Ratas , Animales , Péptidos beta-Amiloides/toxicidad , Replicación del ADN , Muerte Celular , Apoptosis/fisiología , Neuronas/fisiología , ADN Polimerasa Dirigida por ADN
10.
ACS Appl Mater Interfaces ; 15(4): 5732-5743, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36688816

RESUMEN

Carbon-based nanostructures are attracting a lot of attention because of their very low toxicity, excellent visible light-triggered optical and photothermal properties, and intriguing applications. Currently, the development of multifunctional carbon-based nanostructures for a synergistic chemo-photothermal approach is a challenging topic for the advancement of cancer treatment. Here, we report an unprecedented example of photoresponsive carbon-based polymer dots (CPDs-PNM) obtained by a one-pot thermal process from poly(N-isopropylacrylamide) (PNIPAM) without using organic solvent and additional reagents. The CPDs-PNM nanostructures were characterized by spectroscopic techniques, transmission electron microscopy, and atomic force microscopy. The CPDs-PNM exhibited high photothermal conversion efficiency, lower critical solution temperature (LCST) behavior, and good cytarabine (arabinosyl cytosine, AraC) loading capacity (62.3%). The formation of a CPDs-PNM/AraC adduct and photothermal-controlled drug release, triggered by green light excitation, were demonstrated by spectroscopic techniques, and the drug-polymer interaction and drug release mechanism were well supported by modeling simulation calculations. The cellular uptake of empty and AraC-loaded CPDs-PNM was imaged by confocal laser scanning microscopy. In vitro experiments evidenced that CPDs-PNM did not affect the viability of neuroblastoma cells, while the CPDs-PNM/AraC adduct under light irradiation exhibited significantly higher toxicity than AraC alone by a combined chemo-photothermal effect.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Carbono/química , Doxorrubicina/química , Citarabina , Polímeros/química , Luz , Fototerapia/métodos , Nanopartículas/química
11.
ACS Chem Neurosci ; 13(4): 486-496, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35080861

RESUMEN

Alzheimer's disease, the most common form of dementia, is characterized by the aggregation of amyloid beta protein (Aß). The aggregation and toxicity of Aß are strongly modulated by metal ions and phospholipidic membranes. In particular, Cu2+ ions play a pivotal role in modulating Aß aggregation. Although in the last decades several natural or synthetic compounds were evaluated as candidate drugs, to date, no treatments are available for the pathology. Multifunctional compounds able to both inhibit fibrillogenesis, and in particular the formation of oligomeric species, and prevent the formation of the Aß:Cu2+ complex are of particular interest. Here we tested the anti-aggregating properties of a heptapeptide, Semax, an ACTH-like peptide, which is known to form a stable complex with Cu2+ ions and has been proven to have neuroprotective and nootropic effects. We demonstrated through a combination of spectrofluorometric, calorimetric, and MTT assays that Semax not only is able to prevent the formation of Aß:Cu2+ complexes but also has anti-aggregating and protective properties especially in the presence of Cu2+. The results suggest that Semax inhibits fiber formation by interfering with the fibrillogenesis of Aß:Cu2+ complexes.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Hormona Adrenocorticotrópica/análogos & derivados , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Cobre/metabolismo , Humanos , Membranas Artificiales , Fragmentos de Péptidos/metabolismo
12.
Chem Commun (Camb) ; 58(19): 3126-3129, 2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-35018398

RESUMEN

Luminescent and photothermic carbon polymer dots (CPDs-PNM), composed of a carbonized core and cross-linked chains of poly(N-isopropylacrylamide), were synthetized by a novel, simple, solvent- and reagent-free method. The formation of CPDs-PNM was controlled by both temperature and heating time. The CPDs-PNM exhibited LCST behaviour, high photothermal conversion efficiency, curcumin loading capacity and no toxicity to eukaryotic cells. Proof of concept experiments confirmed an excellent thermally induced drug release activity to be used for photothermally controlled drug release.


Asunto(s)
Carbono/química , Polímeros/química , Puntos Cuánticos/química , Temperatura , Portadores de Fármacos/química , Luminiscencia , Procesos Fotoquímicos , Polímeros/síntesis química
13.
J Colloid Interface Sci ; 613: 814-826, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35074707

RESUMEN

Recognition and capture of amyloid beta (Aß) is a challenging task for the early diagnosis of neurodegenerative disorders, such as Alzheimer's disease. Here, we report a novel KLVFF-modified nanomagnet based on magnetic nanoparticles (MNP) covered with a non-ionic amphiphilic ß-cyclodextrin (SC16OH) and decorated with KLVFF oligopeptide for the self-recognition of the homologous amino-acids sequence of Aß to collect Aß (1-42) peptide from aqueous samples. MNP@SC16OH and MNP@SC16OH/Ada-Pep nanoassemblies were fully characterized by complementary techniques both as solid powders and in aqueous dispersions. Single domain MNP@SC16OH/Ada-Pep nanomagnets of 20-40 nm were observed by TEM analysis. DLS and ζ-potential measurements revealed that MNP@SC16OH nanoassemblies owned in aqueous dispersion a hydrodynamic radius of about 150 nm, which was unaffected by Ada-Pep decoration, while the negative ζ-potential of MNP@SC16OH (-40 mV) became less negative (-30 mV) in MNP@SC16OH/Ada-Pep, confirming the exposition of positively charged KLVFF on nanomagnets surface. The ability of MNP@SC16OH/Ada-Pep to recruit Aß (1-42) in aqueous solution was evaluated by MALDI-TOF and compared with the ineffectiveness of undecorated MNP@SC16OH and VFLKF scrambled peptide-decorated nanoassemblies (MNP@SC16OH/Ada-scPep), pointing out the selectivity of KLVFF-decorated nanohybrid towards Aß (1-42). Finally, the property of nanomagnets to extract Aß in conditioned medium of cells over-producing Aß peptides was investigated as proof of concept of effectiveness of these nanomaterials as potential diagnostic tools.


Asunto(s)
Péptidos beta-Amiloides , Ciclodextrinas , Oligopéptidos , Fragmentos de Péptidos
14.
Mol Pharmacol ; 79(3): 618-26, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21159998

RESUMEN

Dual orthosteric agonists of metabotropic glutamate 2 (mGlu2) and mGlu3 receptors are being developed as novel antipsychotic agents devoid of the adverse effects of conventional antipsychotics. Therefore, these drugs could be helpful for the treatment of psychotic symptoms associated with Alzheimer's disease (AD). In experimental animals, the antipsychotic activity of mGlu2/3 receptor agonists is largely mediated by the activation of mGlu2 receptors and is mimicked by selective positive allosteric modulators (PAMs) of mGlu2 receptors. We investigated the distinct influence of mGlu2 and mGlu3 receptors in mixed and pure neuronal cultures exposed to synthetic ß-amyloid protein (Aß) to model neurodegeneration occurring in AD. The mGlu2 receptor PAM, N-4'-cyano-biphenyl-3-yl)-N-(3-pyridinylmethyl)-ethanesulfonamide hydrochloride (LY566332), devoid of toxicity per se, amplified Aß-induced neurodegeneration, and this effect was prevented by the mGlu2/3 receptor antagonist (2S,1'S,2'S)-2-(9-xanthylmethyl)-2-(2'-carboxycyclopropyl)glycine (LY341495). LY566332 potentiated Aß toxicity regardless of the presence of glial mGlu3 receptors, but it was inactive when neurons lacked mGlu2 receptors. The dual mGlu2/3 receptor agonist, (-)-2-oxa-4-aminobicyclo[3.1.0]exhane-4,6-dicarboxylic acid (LY379268), was neuroprotective in mixed cultures via a paracrine mechanism mediated by transforming growth factor-ß1. LY379268 lost its protective activity in neurons grown with astrocytes lacking mGlu3 receptors, indicating that protection against Aß neurotoxicity was mediated entirely by glial mGlu3 receptors. The selective noncompetitive mGlu3 receptor antagonist, (3S)-1-(5-bromopyrimidin-2-yl)-N-(2,4-dichlorobenzyl)pyrrolidin-3-amine methanesulfonate hydrate (LY2389575), amplified Aß toxicity on its own, and, interestingly, unmasked a neurotoxic activity of LY379268, which probably was mediated by the activation of mGlu2 receptors. These data indicate that selective potentiation of mGlu2 receptors enhances neuronal vulnerability to Aß, whereas dual activation of mGlu2 and mGlu3 receptors is protective against Aß-induced toxicity.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/efectos de los fármacos , Antipsicóticos/farmacología , Fármacos Neuroprotectores/farmacología , Trastornos Psicóticos/tratamiento farmacológico , Receptores de Glutamato Metabotrópico/efectos de los fármacos , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/metabolismo , Aminoácidos/farmacología , Péptidos beta-Amiloides/metabolismo , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Células Cultivadas , Ratones , Ratones Noqueados , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Trastornos Psicóticos/etiología , Trastornos Psicóticos/metabolismo , Piridinas/farmacología , Ratas , Ratas Sprague-Dawley , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de Glutamato Metabotrópico/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sulfonamidas/farmacología , Factor de Crecimiento Transformador beta1/farmacología , Xantenos/farmacología
15.
J Neurosci Res ; 89(4): 592-600, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21290409

RESUMEN

Anabolic-androgenic steroid (AAS) abuse is associated with multiple neurobehavioral disturbances. The sites of action and the neurobiological sequels of AAS abuse are unclear at present. We investigated whether two different AASs, nandrolone and methandrostenolone, could affect neuronal survival in culture. The endogenous androgenic steroid testosterone was used for comparison. Both testosterone and nandrolone were neurotoxic at micromolar concentrations, and their effects were prevented by blockade of androgen receptors (ARs) with flutamide. Neuronal toxicity developed only over a 48-hr exposure to the steroids. The cell-impermeable analogues testosterone-BSA and nandrolone-BSA, which preferentially target membrane-associated ARs, were also neurotoxic in a time-dependent and flutamide-sensitive manner. Testosterone-BSA and nandrolone-BSA were more potent than their parent compounds, suggesting that membrane-associated ARs were the relevant sites for the neurotoxic actions of the steroids. Unlike testosterone and nandrolone, toxicity by methandrostenolone and methandrostenolone-BSA was insensitive to flutamide, but it was prevented by the glucocorticoid receptor (GR) antagonist RU-486. Methandrostenolone-BSA was more potent than the parent compound, suggesting that its toxicity relied on the preferential activation of putative membrane-associated GRs. Consistently with the evidence that membrane-associated GRs can mediate rapid effects, a brief challenge with methandrostenolone-BSA was able to promote neuronal toxicity. Activation of putative membrane steroid receptors by nontoxic (nanomolar) concentrations of either nandrolone-BSA or methandrostenolone-BSA became sufficient to increase neuronal susceptibility to the apoptotic stimulus provided by ß-amyloid (the main culprit of AD). We speculate that AAS abuse might facilitate the onset or progression of neurodegenerative diseases not usually linked to drug abuse.


Asunto(s)
Anabolizantes/toxicidad , Metandrostenolona/toxicidad , Nandrolona/toxicidad , Neuronas/efectos de los fármacos , Síndromes de Neurotoxicidad/metabolismo , Andrógenos/toxicidad , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Astrocitos/patología , Western Blotting , Muerte Celular/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo , Técnica del Anticuerpo Fluorescente , Microscopía Confocal , Neuronas/metabolismo , Neuronas/patología , Síndromes de Neurotoxicidad/patología , Ratas , Ratas Sprague-Dawley , Receptores Androgénicos/metabolismo , Receptores de Glucocorticoides/metabolismo , Albúmina Sérica Bovina/farmacología
17.
Aging (Albany NY) ; 13(14): 18033-18050, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34290150

RESUMEN

Research on cerebral glucose metabolism has shown that the aging brain experiences a fall of aerobic glycolysis, and that the age-related loss of aerobic glycolysis may accelerate Alzheimer's disease pathology. In the healthy brain, aerobic glycolysis, namely the use of glucose outside oxidative phosphorylation, may cover energy demand and increase neuronal resilience to stressors at once. Currently, the drivers of aerobic glycolysis in neurons are unknown. We previously demonstrated that synthetic monomers of ß-amyloid protein (Aß) enhance glucose uptake in neurons, and that endogenous Aß is required for depolarization-induced glucose uptake in cultured neurons. In this work, we show that cultured cortical neurons increased aerobic glycolysis in response to the inhibition of oxidative phosphorylation by oligomycin or to a kainate pulse. Such an increase was prevented by blocking the endogenous Aß tone and re-established by the exogenous addition of synthetic Aß monomers. The activity of mitochondria-bound hexokinase-1 appeared to be necessary for monomers-stimulated aerobic glycolysis during oxidative phosphorylation blockade or kainate excitation. Our data suggest that, through Aß release, neurons coordinate glucose uptake with aerobic glycolysis in response to metabolic stressors. The implications of this new finding are that the age-related drop in aerobic glycolysis and the susceptibility to Alzheimer's disease could be linked to factors interfering with release and functions of Aß monomers.


Asunto(s)
Envejecimiento/metabolismo , Péptidos beta-Amiloides/metabolismo , Glucosa/metabolismo , Neuronas/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Encéfalo/metabolismo , Metabolismo Energético , Glucólisis , Fosforilación Oxidativa , Ratas
18.
ACS Chem Neurosci ; 12(8): 1449-1462, 2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33844495

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative condition affecting people in the elderly. Targeting aggregation of ß-amyloid peptides (Aß) is considered a promising approach for the therapeutic treatment of the disease. Peptide based inhibitors of ß-amyloid fibrillation are emerging as safe drug candidates as well as interesting compounds for early diagnosis of AD. Peptide conjugation via covalent bond with functional moieties enables the resultant hybrid system to acquire desired functions. Here we report the synthesis, the structural characterization, and the Aß42 interaction of a p-amino-calix[4]arene derivative bearing a GPGKLVFF peptide pendant at the lower rim. We demonstrate that the p-amino-calix[4]arene-GPGKLVFF conjugate alters the Aß42 aggregation pathways by preventing Aß42's conformational transition from random coil to ß-sheet with concomitant changes of the aggregation kinetic profile as evidenced by circular dichroism (CD), thioflavin T (ThT), and dynamic light scattering (DLS) measurements, respectively. High resolution mass spectrometry (HR-MS) confirmed a direct interaction of the p-amino-calix[4]arene-GPGKLVFF conjugate with Aß42 monomer which provided insight into a possible working mechanism, whereas the alteration of the Aß42's fibrillary architecture, by the calix-peptide conjugate, was further validated by atomic force microscopy (AFM) imaging. Finally, the herein proposed compound was shown to be effective against Aß42 oligomers' toxicity in differentiated neuroblastoma cells, SH-SY5Y.


Asunto(s)
Enfermedad de Alzheimer , Fragmentos de Péptidos , Anciano , Péptidos beta-Amiloides , Calixarenos , Humanos , Neuronas , Fenoles
19.
J Neurosci ; 29(34): 10582-7, 2009 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-19710311

RESUMEN

The 42-aa-long beta-amyloid protein--Abeta(1-42)--is thought to play a central role in the pathogenesis of Alzheimer's disease (AD) (Walsh and Selkoe, 2007). Data from AD brain (Shankar et al., 2008), transgenic APP (amyloid precursor protein)-overexpressing mice (Lesné et al., 2006), and neuronal cultures treated with synthetic Abeta peptides (Lambert et al., 1998) indicate that self-association of Abeta(1-42) monomers into soluble oligomers is required for neurotoxicity. The function of monomeric Abeta(1-42) is unknown. The evidence that Abeta(1-42) is present in the brain and CSF of normal individuals suggests that the peptide is physiologically active (Shoji, 2002). Here we show that synthetic Abeta(1-42) monomers support the survival of developing neurons under conditions of trophic deprivation and protect mature neurons against excitotoxic death, a process that contributes to the overall neurodegeneration associated with AD. The neuroprotective action of Abeta(1-42) monomers was mediated by the activation of the PI-3-K (phosphatidylinositol-3-kinase) pathway, and involved the stimulation of IGF-1 (insulin-like growth factor-1) receptors and/or other receptors of the insulin superfamily. Interestingly, monomers of Abeta(1-42) carrying the Arctic mutation (E22G) associated with familiar AD (Nilsberth et al., 2001) were not neuroprotective. We suggest that pathological aggregation of Abeta(1-42) may also cause neurodegeneration by depriving neurons of the protective activity of Abeta(1-42) monomers. This "loss-of-function" hypothesis of neuronal death should be taken into consideration when designing therapies aimed at reducing Abeta burden.


Asunto(s)
Péptidos beta-Amiloides/farmacología , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Fragmentos de Péptidos/farmacología , Péptidos beta-Amiloides/química , Análisis de Varianza , Animales , Butadienos/farmacología , Muerte Celular/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/citología , Relación Dosis-Respuesta a Droga , Embrión de Mamíferos , Inhibidores Enzimáticos/farmacología , Agonistas de Aminoácidos Excitadores/toxicidad , N-Metilaspartato/toxicidad , Nitrilos/farmacología , Fragmentos de Péptidos/química , Podofilotoxina/análogos & derivados , Podofilotoxina/farmacología , Ratas , Tirfostinos/farmacología
20.
ACS Chem Neurosci ; 11(17): 2566-2576, 2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32687307

RESUMEN

Alzheimer's disease (AD) is linked to the abnormal accumulation of amyloid ß peptide (Aß) aggregates in the brain. Silybin B, a natural compound extracted from milk thistle (Silybum marianum), has been shown to significantly inhibit Aß aggregation in vitro and to exert neuroprotective properties in vivo. However, further explorations of silybin B's clinical potential are currently limited by three main factors: (a) poor solubility, (b) instability in blood serum, and (c) only partial knowledge of silybin's mechanism of action. Here, we address these three limitations. We demonstrate that conjugation of a trehalose moiety to silybin significantly increases both water solubility and stability in blood serum without significantly compromising its antiaggregation properties. Furthermore, using a combination of biophysical techniques with different spatial resolution, that is, TEM, ThT fluorescence, CD, and NMR spectroscopy, we profile the interactions of the trehalose conjugate with both Aß monomers and oligomers and evidence that silybin may shield the "toxic" surfaces formed by the N-terminal and central hydrophobic regions of Aß. Finally, comparative analysis with silybin A, a less active diastereoisomer of silybin B, revealed how even subtle differences in chemical structure may entail different effects on amyloid inhibition. The resulting insight on the mechanism of action of silybins as aggregation inhibitors is anticipated to facilitate the future investigation of silybin's therapeutic potential.


Asunto(s)
Péptidos beta-Amiloides , Profármacos , Antioxidantes , Fragmentos de Péptidos , Silibina , Trehalosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA