Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(33): 20223-20234, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32759215

RESUMEN

Nano-sized archaeota, with their small genomes and limited metabolic capabilities, are known to associate with other microbes, thereby compensating for their own auxotrophies. These diminutive and yet ubiquitous organisms thrive in hypersaline habitats that they share with haloarchaea. Here, we reveal the genetic and physiological nature of a nanohaloarchaeon-haloarchaeon association, with both microbes obtained from a solar saltern and reproducibly cultivated together in vitro. The nanohaloarchaeon Candidatus Nanohalobium constans LC1Nh is an aerotolerant, sugar-fermenting anaerobe, lacking key anabolic machinery and respiratory complexes. The nanohaloarchaeon cells are found physically connected to the chitinolytic haloarchaeon Halomicrobium sp. LC1Hm. Our experiments revealed that this haloarchaeon can hydrolyze chitin outside the cell (to produce the monosaccharide N-acetylglucosamine), using this beta-glucan to obtain carbon and energy for growth. However, LC1Hm could not metabolize either glycogen or starch (both alpha-glucans) or other polysaccharides tested. Remarkably, the nanohaloarchaeon's ability to hydrolyze glycogen and starch to glucose enabled growth of Halomicrobium sp. LC1Hm in the absence of a chitin. These findings indicated that the nanohaloarchaeon-haloarchaeon association is both mutualistic and symbiotic; in this case, each microbe relies on its partner's ability to degrade different polysaccharides. This suggests, in turn, that other nano-sized archaeota may also be beneficial for their hosts. Given that availability of carbon substrates can vary both spatially and temporarily, the susceptibility of Halomicrobium to colonization by Ca Nanohalobium can be interpreted as a strategy to maximize the long-term fitness of the host.


Asunto(s)
Halobacteriaceae/fisiología , Nanoarchaeota/fisiología , Polisacáridos/metabolismo , Simbiosis/fisiología , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Técnicas de Cocultivo , Regulación de la Expresión Génica Arqueal , Genoma Arqueal , Genómica , Filogenia
2.
Proc Natl Acad Sci U S A ; 113(48): 13678-13683, 2016 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-27856741

RESUMEN

Low-income and minority students are substantially underrepresented in gifted education programs. The disparities persist despite efforts by many states and school districts to broaden participation through changes in their eligibility criteria. One explanation for the persistent gap is that standard processes for identifying gifted students, which are based largely on the referrals of parents and teachers, tend to miss qualified students from underrepresented groups. We study this hypothesis using the experiences of a large urban school district following the introduction of a universal screening program for second graders. Without any changes in the standards for gifted eligibility, the screening program led to large increases in the fractions of economically disadvantaged and minority students placed in gifted programs. Comparisons of the newly identified gifted students with those who would have been placed in the absence of screening show that Blacks and Hispanics, free/reduced price lunch participants, English language learners, and girls were all systematically "underreferred" in the traditional parent/teacher referral system. Our findings suggest that parents and teachers often fail to recognize the potential of poor and minority students and those with limited English proficiency.


Asunto(s)
Niño Superdotado/educación , Tamizaje Masivo , Grupos Minoritarios/educación , Niño , Preescolar , Etnicidad/educación , Femenino , Humanos , Masculino , Factores Socioeconómicos
3.
Environ Microbiol ; 17(2): 364-82, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25622758

RESUMEN

Within the complex of deep, hypersaline anoxic lakes (DHALs) of the Mediterranean Ridge, we identified a new, unexplored DHAL and named it 'Lake Kryos' after a nearby depression. This lake is filled with magnesium chloride (MgCl2 )-rich, athalassohaline brine (salinity > 470 practical salinity units), presumably formed by the dissolution of Messinian bischofite. Compared with the DHAL Discovery, it contains elevated concentrations of kosmotropic sodium and sulfate ions, which are capable of reducing the net chaotropicily of MgCl2 -rich solutions. The brine of Lake Kryos may therefore be biologically permissive at MgCl2 concentrations previously considered incompatible with life. We characterized the microbiology of the seawater-Kryos brine interface and managed to recover mRNA from the 2.27-3.03 M MgCl2 layer (equivalent to 0.747-0.631 water activity), thereby expanding the established chaotropicity window-for-life. The primary bacterial taxa present there were Kebrit Deep Bacteria 1 candidate division and DHAL-specific group of organisms, distantly related to Desulfohalobium. Two euryarchaeal candidate divisions, Mediterranean Sea Brine Lakes group 1 and halophilic cluster 1, accounted for > 85% of the rRNA-containing archaeal clones derived from the 2.27-3.03 M MgCl2 layer, but were minority community-members in the overlying interface-layers. These findings shed light on the plausibility of life in highly chaotropic environments, geochemical windows for microbial extremophiles, and have implications for habitability elsewhere in the Solar System.


Asunto(s)
Archaea/genética , Bacterias/genética , Lagos/microbiología , Consorcios Microbianos/fisiología , Agua de Mar/microbiología , Archaea/clasificación , Archaea/metabolismo , Bacterias/clasificación , Bacterias/metabolismo , Mar Mediterráneo , Filogenia , ARN Mensajero/genética , ARN Ribosómico 16S/genética , Salinidad , Sales (Química)/análisis , Cloruro de Sodio/análisis , Microbiología del Agua
4.
Environ Microbiol Rep ; 16(2): e13258, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38589217

RESUMEN

DNA methylation serves a variety of functions across all life domains. In this study, we investigated archaeal methylomics within a tripartite xylanolytic halophilic consortium. This consortium includes Haloferax lucertense SVX82, Halorhabdus sp. SVX81, and an ectosymbiotic Candidatus Nanohalococcus occultus SVXNc, a nano-sized archaeon from the DPANN superphylum. We utilized PacBio SMRT and Illumina cDNA sequencing to analyse samples from consortia of different compositions for methylomics and transcriptomics. Endogenous cTAG methylation, typical of Haloferax, was accompanied in this strain by methylation at four other motifs, including GDGcHC methylation, which is specific to the ectosymbiont. Our analysis of the distribution of methylated and unmethylated motifs suggests that autochthonous cTAG methylation may influence gene regulation. The frequency of GRAGAaG methylation increased in highly expressed genes, while CcTTG and GTCGaGG methylation could be linked to restriction-modification (RM) activity. Generally, the RM activity might have been reduced during the evolution of this archaeon to balance the protection of cells from intruders, the reduction of DNA damage due to self-restriction in stressful environments, and the benefits of DNA exchange under extreme conditions. Our methylomics, transcriptomics and complementary electron cryotomography (cryo-ET) data suggest that the nanohaloarchaeon exports its methyltransferase to methylate the Haloferax genome, unveiling a new aspect of the interaction between the symbiont and its host.


Asunto(s)
Archaea , Metilación de ADN , Archaea/genética , Perfilación de la Expresión Génica , Expresión Génica , Metiltransferasas/genética , ADN de Archaea/genética
5.
Environ Microbiol ; 15(1): 167-82, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22827264

RESUMEN

The marine pelagic zone situated > 200 m below the sea level (bls) is the largest marine subsystem, comprising more than two-thirds of the oceanic volume. At the same time, it is one of the least explored ecosystems on Earth. Few large-scale environmental genomics studies have been undertaken to examine the phylogenetic diversity and functional gene repertoire of planktonic microbes present in mesopelagic and bathypelagic environments. Here, we present the description of the deep-sea microbial community thriving at > 4900 m depth in Matapan-Vavilov Deep (MVD). This canyon is the deepest site of Mediterranean Sea, with a deepest point located at approximately 5270 m, 56 km SW of city Pylos (Greece) in the Ionian Sea (36°34.00N, 21°07.44E). Comparative analysis of whole-metagenomic data revealed that unlike other deep-sea metagenomes, the prokaryotic diversity in MVD was extremely poor. The decline in the dark primary production rates, measured at 4908 m depth, was coincident with overwhelming dominance of copiotrophic Alteromonas macleodii'deep-ecotype' AltDE at the expense of other prokaryotes including those potentially involved in both autotrophic and anaplerotic CO(2) fixation. We also demonstrate the occurrence in deep-sea metagenomes of several clustered regularly interspaced short palindromic repeats systems.


Asunto(s)
Alteromonas/genética , Archaea/genética , Biodiversidad , Microbiología Ambiental , Metagenoma , Metagenómica , Alteromonas/clasificación , Alteromonas/enzimología , Archaea/clasificación , Archaea/enzimología , Procesos Autotróficos , Ecosistema , Grecia , Mar Mediterráneo , Océanos y Mares , Filogenia , Agua de Mar/microbiología , Virus/clasificación , Virus/genética
6.
Environ Microbiol ; 15(6): 1717-33, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23253149

RESUMEN

We used a combination of molecular and microbiological approaches to determine the activity, abundance and diversity of archaeal populations inhabiting meromictic saline Lake Faro (Messina, Italy). Analysis of archaeal 16S rRNA, amoA, accA and hbd genes and transcripts revealed that sub- and anoxic layers of Lake Faro are primarily inhabited by the organisms related to the clusters of Marine Group I.1a of Thaumarchaeota frequently recovered from oxygen-depleted marine ecosystems. These organisms dominated the metabolically active archaea down to the bottom of the lake, indicating their adaptation to recurrent changes in the levels of water column hypoxia. The upper microaerobic layer of Lake Faro redoxcline has the maximal rates of dark primary production much lower than those of other previously studied pelagic redoxclines, but comparable to the values of meso- and bathypelagic areas of Mediterranean Sea. Application of bacterial inhibitors, especially azide, significantly declined the CO2 fixation rates in the low interface and monimolimnion, whereas archaea-specific inhibitor had effect only in upper part of the redoxcline. Based on these findings, we hypothesize that dark bicarbonate fixation in suboxic zone of Lake Faro results mainly from archaeal activity which is affected by the predicted lack in oxygen in lower layers.


Asunto(s)
Archaea/metabolismo , Ecosistema , Lagos/microbiología , Salinidad , Anaerobiosis , Archaea/clasificación , Archaea/genética , Biodiversidad , Dióxido de Carbono/metabolismo , Microbiología Ambiental , Genes Arqueales/genética , Italia , Mar Mediterráneo , Datos de Secuencia Molecular , Oxígeno/química , Filogenia , ARN Ribosómico 16S/genética
7.
Nature ; 440(7081): 203-7, 2006 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-16525471

RESUMEN

The chemical composition of the Bannock basin has been studied in some detail. We recently showed that unusual microbial populations, including a new division of Archaea (MSBL1), inhabit the NaCl-rich hypersaline brine. High salinities tend to reduce biodiversity, but when brines come into contact with fresher water the natural haloclines formed frequently contain gradients of other chemicals, including permutations of electron donors and acceptors, that may enhance microbial diversity, activity and biogeochemical cycling. Here we report a 2.5-m-thick chemocline with a steep NaCl gradient at 3.3 km within the water column betweeen Bannock anoxic hypersaline brine and overlying sea water. The chemocline supports some of the most biomass-rich and active microbial communities in the deep sea, dominated by Bacteria rather than Archaea, and including four major new divisions of Bacteria. Significantly higher metabolic activities were measured in the chemocline than in the overlying sea water and underlying brine; functional analyses indicate that a range of biological processes is likely to occur in the chemocline. Many prokaryotic taxa, including the phylogenetically new groups, were confined to defined salinities, and collectively formed a diverse, sharply stratified, deep-sea ecosystem with sufficient biomass to potentially contribute to organic geological deposits.


Asunto(s)
Archaea/metabolismo , Bacterias/metabolismo , Ecosistema , Oxígeno/metabolismo , Células Procariotas/metabolismo , Agua de Mar/microbiología , Microbiología del Agua , Aerobiosis , Anaerobiosis , Archaea/clasificación , Archaea/genética , Archaea/aislamiento & purificación , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Biodiversidad , Datos de Secuencia Molecular , Océanos y Mares , Células Procariotas/clasificación , Navíos
8.
Proc Natl Acad Sci U S A ; 106(23): 9151-6, 2009 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-19470485

RESUMEN

Urania basin in the deep Mediterranean Sea houses a lake that is >100 m deep, devoid of oxygen, 6 times more saline than seawater, and has very high levels of methane and particularly sulfide (up to 16 mM), making it among the most sulfidic water bodies on Earth. Along the depth profile there are 2 chemoclines, a steep one with the overlying oxic seawater, and another between anoxic brines of different density, where gradients of salinity, electron donors and acceptors occur. To identify and differentiate the microbes and processes contributing to the turnover of organic matter and sulfide along the water column, these chemoclines were sampled at a high resolution. Bacterial cell numbers increased up to a hundredfold in the chemoclines as a consequence of elevated nutrient availability, with higher numbers in the upper interface where redox gradient was steeper. Bacterial and archaeal communities, analyzed by DNA fingerprinting, 16S rRNA gene libraries, activity measurements, and cultivation, were highly stratified and metabolically more active along the chemoclines compared with seawater or the uniformly hypersaline brines. Detailed analysis of 16S rRNA gene sequences revealed that in both chemoclines delta- and epsilon-Proteobacteria, predominantly sulfate reducers and sulfur oxidizers, respectively, were the dominant bacteria. In the deepest layers of the basin MSBL1, putatively responsible for methanogenesis, dominated among archaea. The data suggest that the complex microbial community is adapted to the basin's extreme chemistry, and the elevated biomass is driven largely by sulfur cycling and methanogenesis.


Asunto(s)
Archaea/metabolismo , Bacterias/metabolismo , Agua de Mar/microbiología , Azufre/metabolismo , Ecosistema , Manganeso/metabolismo , Datos de Secuencia Molecular , Nitratos/metabolismo , Oxígeno/metabolismo , Salinidad , Agua/metabolismo
9.
Environ Microbiol ; 13(8): 2250-68, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21518212

RESUMEN

In September 2008, an expedition of the RV Urania was devoted to exploration of the genomic richness of deep hypersaline anoxic lakes (DHALs) located in the Western part of the Mediterranean Ridge. Approximately 40 nautical miles SE from Urania Lake, the presence of anoxic hypersaline lake, which we named Thetis, was confirmed by swath bathymetry profiling and through immediate sampling casts. The brine surface of the Thetis Lake is located at a depth of 3258 m with a thickness of ≈ 157 m. Brine composition was found to be thalassohaline, saturated by NaCl with a total salinity of 348‰, which is one of highest value reported for DHALs. Similarly to other Mediterranean DHALs, seawater-brine interface of Thetis represents a steep pycno- and chemocline with gradients of salinity, electron donors and acceptors and posseses a remarkable stratification of prokaryotic communities, observed to be more metabolically active in the upper interface where redox gradient was sharper. [(14) C]-bicarbonate fixation analysis revealed that microbial communities are sustained by sulfur-oxidizing chemolithoautotrophic primary producers that thrive within upper interface. Besides microaerophilic autotrophy, heterotrophic sulfate reduction, methanogenesis and anaerobic methane oxidation are likely the predominant processes driving the ecosystem of Thetis Lake.


Asunto(s)
Archaea/fisiología , Fenómenos Fisiológicos Bacterianos , Biodiversidad , Salinidad , Agua de Mar/microbiología , Archaea/clasificación , Archaea/genética , Bacterias/clasificación , Bacterias/genética , Fenómenos Bioquímicos/genética , Metano/metabolismo , Datos de Secuencia Molecular , Océanos y Mares , Filogenia , ARN Ribosómico 16S/genética , Agua de Mar/química
10.
Econ Educ Rev ; 30(1): 1-15, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21278841

RESUMEN

This paper examines the effects of alcohol use on high school students' quality of learning. We estimate fixed-effects models using data from the National Longitudinal Study of Adolescent Health. Our primary measure of academic achievement is the student's GPA abstracted from official school transcripts. We find that increases in alcohol consumption result in small yet statistically significant reductions in GPA for male students and in statistically non-significant changes for females. For females, however, higher levels of drinking result in self-reported academic difficulty. The fixed-effects results are substantially smaller than OLS estimates, underscoring the importance of addressing unobserved individual heterogeneity.

11.
Environ Microbiol ; 12(7): 2020-33, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20406283

RESUMEN

A new piezotolerant alkane-degrading bacterium (Marinobacter hydrocarbonoclasticus strain #5) was isolated from deep (3475 m) Mediterranean seawater and grown at atmospheric pressure (0.1 MPa) and at 35 MPa with hexadecane as sole source of carbon and energy. Modification of the hydrostatic pressure influenced neither the growth rate nor the amount of degraded hexadecane (approximately 90%) during 13 days of incubation. However, the lipid composition of the cells sharply differed under both pressure conditions. At 0.1 MPa, M. hydrocarbonoclasticus #5 biosynthesized large amounts ( approximately 62% of the total cellular lipids) of hexadecane-derived wax esters (WEs), which accumulated in the cells under the form of individual lipid bodies. Intracellular WEs were also synthesized at 35 MPa, but their proportion was half that at 0.1 MPa. This lower WE content at high pressure was balanced by an increase in the total cellular phospholipid content. The chemical composition of WEs formed under both pressure conditions also strongly differed. Saturated WEs were preferentially formed at 0.1 MPa whereas diunsaturated WEs dominated at 35 MPa. This increase of the unsaturation ratio of WEs resembled the one classically observed for bacterial membrane lipid homeostasis. Remarkably, the unsaturation ratio of membrane fatty acids of M. hydrocarbonoclasticus grown at 35 MPa was only slightly higher than at 0.1 MPa. Overall, the results suggest that intracellular WEs and phospholipids play complementary roles in the physiological adaptation of strain #5 to different hydrostatic pressures.


Asunto(s)
Citoplasma/química , Presión Hidrostática , Metabolismo de los Lípidos , Marinobacter/fisiología , Lípidos de la Membrana/análisis , Estrés Fisiológico , Alcanos/metabolismo , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Marinobacter/crecimiento & desarrollo , Marinobacter/aislamiento & purificación , Marinobacter/metabolismo , Mar Mediterráneo , Membranas , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Orgánulos/ultraestructura , Filogenia , ARN Ribosómico 16S/genética , Agua de Mar/microbiología , Análisis de Secuencia de ADN
12.
Ann Glob Health ; 86(1): 151, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33354517

RESUMEN

Background: Pollution - unwanted waste released to air, water, and land by human activity - is the largest environmental cause of disease in the world today. It is responsible for an estimated nine million premature deaths per year, enormous economic losses, erosion of human capital, and degradation of ecosystems. Ocean pollution is an important, but insufficiently recognized and inadequately controlled component of global pollution. It poses serious threats to human health and well-being. The nature and magnitude of these impacts are only beginning to be understood. Goals: (1) Broadly examine the known and potential impacts of ocean pollution on human health. (2) Inform policy makers, government leaders, international organizations, civil society, and the global public of these threats. (3) Propose priorities for interventions to control and prevent pollution of the seas and safeguard human health. Methods: Topic-focused reviews that examine the effects of ocean pollution on human health, identify gaps in knowledge, project future trends, and offer evidence-based guidance for effective intervention. Environmental Findings: Pollution of the oceans is widespread, worsening, and in most countries poorly controlled. It is a complex mixture of toxic metals, plastics, manufactured chemicals, petroleum, urban and industrial wastes, pesticides, fertilizers, pharmaceutical chemicals, agricultural runoff, and sewage. More than 80% arises from land-based sources. It reaches the oceans through rivers, runoff, atmospheric deposition and direct discharges. It is often heaviest near the coasts and most highly concentrated along the coasts of low- and middle-income countries. Plastic is a rapidly increasing and highly visible component of ocean pollution, and an estimated 10 million metric tons of plastic waste enter the seas each year. Mercury is the metal pollutant of greatest concern in the oceans; it is released from two main sources - coal combustion and small-scale gold mining. Global spread of industrialized agriculture with increasing use of chemical fertilizer leads to extension of Harmful Algal Blooms (HABs) to previously unaffected regions. Chemical pollutants are ubiquitous and contaminate seas and marine organisms from the high Arctic to the abyssal depths. Ecosystem Findings: Ocean pollution has multiple negative impacts on marine ecosystems, and these impacts are exacerbated by global climate change. Petroleum-based pollutants reduce photosynthesis in marine microorganisms that generate oxygen. Increasing absorption of carbon dioxide into the seas causes ocean acidification, which destroys coral reefs, impairs shellfish development, dissolves calcium-containing microorganisms at the base of the marine food web, and increases the toxicity of some pollutants. Plastic pollution threatens marine mammals, fish, and seabirds and accumulates in large mid-ocean gyres. It breaks down into microplastic and nanoplastic particles containing multiple manufactured chemicals that can enter the tissues of marine organisms, including species consumed by humans. Industrial releases, runoff, and sewage increase frequency and severity of HABs, bacterial pollution, and anti-microbial resistance. Pollution and sea surface warming are triggering poleward migration of dangerous pathogens such as the Vibrio species. Industrial discharges, pharmaceutical wastes, pesticides, and sewage contribute to global declines in fish stocks. Human Health Findings: Methylmercury and PCBs are the ocean pollutants whose human health effects are best understood. Exposures of infants in utero to these pollutants through maternal consumption of contaminated seafood can damage developing brains, reduce IQ and increase children's risks for autism, ADHD and learning disorders. Adult exposures to methylmercury increase risks for cardiovascular disease and dementia. Manufactured chemicals - phthalates, bisphenol A, flame retardants, and perfluorinated chemicals, many of them released into the seas from plastic waste - can disrupt endocrine signaling, reduce male fertility, damage the nervous system, and increase risk of cancer. HABs produce potent toxins that accumulate in fish and shellfish. When ingested, these toxins can cause severe neurological impairment and rapid death. HAB toxins can also become airborne and cause respiratory disease. Pathogenic marine bacteria cause gastrointestinal diseases and deep wound infections. With climate change and increasing pollution, risk is high that Vibrio infections, including cholera, will increase in frequency and extend to new areas. All of the health impacts of ocean pollution fall disproportionately on vulnerable populations in the Global South - environmental injustice on a planetary scale. Conclusions: Ocean pollution is a global problem. It arises from multiple sources and crosses national boundaries. It is the consequence of reckless, shortsighted, and unsustainable exploitation of the earth's resources. It endangers marine ecosystems. It impedes the production of atmospheric oxygen. Its threats to human health are great and growing, but still incompletely understood. Its economic costs are only beginning to be counted.Ocean pollution can be prevented. Like all forms of pollution, ocean pollution can be controlled by deploying data-driven strategies based on law, policy, technology, and enforcement that target priority pollution sources. Many countries have used these tools to control air and water pollution and are now applying them to ocean pollution. Successes achieved to date demonstrate that broader control is feasible. Heavily polluted harbors have been cleaned, estuaries rejuvenated, and coral reefs restored.Prevention of ocean pollution creates many benefits. It boosts economies, increases tourism, helps restore fisheries, and improves human health and well-being. It advances the Sustainable Development Goals (SDG). These benefits will last for centuries. Recommendations: World leaders who recognize the gravity of ocean pollution, acknowledge its growing dangers, engage civil society and the global public, and take bold, evidence-based action to stop pollution at source will be critical to preventing ocean pollution and safeguarding human health.Prevention of pollution from land-based sources is key. Eliminating coal combustion and banning all uses of mercury will reduce mercury pollution. Bans on single-use plastic and better management of plastic waste reduce plastic pollution. Bans on persistent organic pollutants (POPs) have reduced pollution by PCBs and DDT. Control of industrial discharges, treatment of sewage, and reduced applications of fertilizers have mitigated coastal pollution and are reducing frequency of HABs. National, regional and international marine pollution control programs that are adequately funded and backed by strong enforcement have been shown to be effective. Robust monitoring is essential to track progress.Further interventions that hold great promise include wide-scale transition to renewable fuels; transition to a circular economy that creates little waste and focuses on equity rather than on endless growth; embracing the principles of green chemistry; and building scientific capacity in all countries.Designation of Marine Protected Areas (MPAs) will safeguard critical ecosystems, protect vulnerable fish stocks, and enhance human health and well-being. Creation of MPAs is an important manifestation of national and international commitment to protecting the health of the seas.


Asunto(s)
Ecosistema , Plásticos , Animales , Humanos , Concentración de Iones de Hidrógeno , Masculino , Océanos y Mares , Agua de Mar , Contaminación del Agua/prevención & control
13.
Sci Rep ; 9(1): 8031, 2019 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-31123315

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

14.
Sci Rep ; 9(1): 1679, 2019 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-30737448

RESUMEN

Hydrated, magnesium-rich minerals and subglacial brines exist on the martian surface, so the habitability of high-Mg2+ environments on Earth has extraterrestrial (as well as terrestrial) implications. Here, we report the discovery of a MgCl2-dominated (4.72 M) brine lake on the floor of the Mediterranean Ridge that underlies a 3500-m water column, and name it Lake Hephaestus. Stable isotope analyses indicated that the Hephaestus brine is derived from interactions between ancient bishofite-enriched evaporites and subsurface fluids. Analyses of sediment pore waters indicated that the Hephaestus depression had contained the MgCl2 brine for a remarkably short period; only 700 years. Lake Hephaestus is, therefore, the youngest among currently known submarine athalassohaline brine lakes on Earth. Due to its biologically hostile properties (low water-activity and extreme chaotropicity), the Hephaestus brine is devoid of life. By contrast, the seawater-Hephaestus brine interface has been shown to act as refuge for extremely halophilic and magnesium-adapted stratified communities of microbes, even at MgCl2 concentrations that approach the water-activity limit for life (0.653).

15.
Front Microbiol ; 9: 3, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29403458

RESUMEN

Covering two-thirds of our planet, the global deep ocean plays a central role in supporting life on Earth. Among other processes, this biggest ecosystem buffers the rise of atmospheric CO2. Despite carbon sequestration in the deep ocean has been known for a long time, microbial activity in the meso- and bathypelagic realm via the "assimilation of bicarbonate in the dark" (ABD) has only recently been described in more details. Based on recent findings, this process seems primarily the result of chemosynthetic and anaplerotic reactions driven by different groups of deep-sea prokaryoplankton. We quantified bicarbonate assimilation in relation to total prokaryotic abundance, prokaryotic heterotrophic production and respiration in the meso- and bathypelagic Mediterranean Sea. The measured ABD values, ranging from 133 to 370 µg C m-3 d-1, were among the highest ones reported worldwide for similar depths, likely due to the elevated temperature of the deep Mediterranean Sea (13-14°C also at abyssal depths). Integrated over the dark water column (≥200 m depth), bicarbonate assimilation in the deep-sea ranged from 396 to 873 mg C m-2 d-1. This quantity of produced de novo organic carbon amounts to about 85-424% of the phytoplankton primary production and covers up to 62% of deep-sea prokaryotic total carbon demand. Hence, the ABD process in the meso- and bathypelagic Mediterranean Sea might substantially contribute to the inorganic and organic pool and significantly sustain the deep-sea microbial food web. To elucidate the ABD key-players, we established three actively nitrifying and CO2-fixing prokaryotic enrichments. Consortia were characterized by the co-occurrence of chemolithoautotrophic Thaumarchaeota and chemoheterotrophic proteobacteria. One of the enrichments, originated from Ionian bathypelagic waters (3,000 m depth) and supplemented with low concentrations of ammonia, was dominated by the Thaumarchaeota "low-ammonia-concentration" deep-sea ecotype, an enigmatic and ecologically important group of organisms, uncultured until this study.

16.
Microbiol Res ; 162(2): 185-90, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-16831537

RESUMEN

Mesocosm experiments were performed to study the changes on bacterial community composition following oil spill in marine environment. The analysis of 16S crDNA revealed a shift in the structure of initial bacterial population that was drastically different from that one measured after 15 days. The results showed that, after 15 days, bacteria closely related to the genus Alcanivorax became the dominant group of bacterial community in petroleum-contaminated sea water nitrogen and phosphorus amended. This suggested that these bacteria played the most important role in the process of bioremediation of oil-contaminated marine environments.


Asunto(s)
Alcanivoraceae/crecimiento & desarrollo , Alcanivoraceae/metabolismo , Petróleo/metabolismo , Agua de Mar/microbiología , Microbiología del Agua , Contaminantes Químicos del Agua/metabolismo , Alcanivoraceae/genética , Biodegradación Ambiental , Recuento de Colonia Microbiana , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Ribosómico 16S/química , ARN Ribosómico 16S/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN
17.
Mar Genomics ; 25: 11-13, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26508673

RESUMEN

Cycloclasticus sp. 78-ME isolated from petroleum deposits of the sunken tanker "Amoco Milford Haven" (Gulf of Genoa, Ligurian Sea, Italy) could effectively degrade polycyclic aromatic hydrocarbons of up to five condensed rings. The genome of 78-ME was sequenced and analysed to gain insights into its remarkable degrading capacities. It comprises two circular replicons, the 2,613,078 bp chromosome and the plasmid of 42,347 bp, with 41.84% and 53.28% of the G + C content respectively. A total of 2585 protein-coding genes were obtained, and three large operons with more than fifteen enzymes belonging to four different classes of ring-cleavage dioxygenases were found.


Asunto(s)
Genoma Bacteriano , Piscirickettsiaceae/genética , Bifenilos Policlorados/metabolismo , Biodegradación Ambiental , Regulación Bacteriana de la Expresión Génica , Mar Mediterráneo , Petróleo/análisis , Petróleo/metabolismo , Piscirickettsiaceae/metabolismo , Navíos
18.
Environ Microbiol Rep ; 8(4): 508-19, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27345842

RESUMEN

Marine prokaryotes have evolved a broad repertoire of defence systems to protect their genomes from lateral gene transfer including innate or acquired immune systems and infection-induced programmed cell suicide and dormancy. Here we report on the analysis of multiple defence systems present in the genome of the strain Cycloclasticus sp. 78-ME isolated from petroleum deposits of the tanker 'Amoco Milford Haven'. Cycloclasticus are ubiquitous bacteria globally important in polyaromatic hydrocarbons degradation in marine environments. Two 'defence islands' were identified in 78-ME genome: the first harbouring CRISPR-Cas with toxin-antitoxin system, while the second was composed by an array of genes for toxin-antitoxin and restriction-modification proteins. Among all identified spacers of CRISPR-Cas system only seven spacers match sequences of phages and plasmids. Furthermore, a conjugative plasmid p7ME01, which belongs to a new IncP-1θ ancestral archetype without any accessory mobile elements was found in 78-ME. Our results provide the context to the co-occurrence of diverse defence mechanisms in the genome of Cycloclasticus sp. 78-ME, which protect the genome of this highly specialized PAH-degrader. This study contributes to the further understanding of complex networks established in petroleum-based microbial communities.


Asunto(s)
Sistemas CRISPR-Cas , Enzimas de Restricción-Modificación del ADN , Hidrocarburos/metabolismo , Piscirickettsiaceae/genética , Piscirickettsiaceae/metabolismo , Plásmidos/análisis , Plásmidos/clasificación , Biotransformación , Genes Bacterianos , Islas Genómicas , Agua de Mar/microbiología
19.
Int Microbiol ; 18(2): 127-34, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26496620

RESUMEN

The fate of hydrocarbon pollutants and the development of oil-degrading indigenous marine bacteria in contaminated sediments are strongly influenced by abiotic factors such as temperature, low oxygen levels, and nutrient availability. In this work, the effects of different biodegradation processes (bioremediation) on oil-polluted anoxic sediments were analyzed. In particular, as a potential bioremediation strategy for polluted sediments, we applied a prototype of the "Modular Slurry System" (MSS), allowing containment of the sediments and their physical-chemical treatment (by air insufflations, temperature regulation, and the use of a slow-release fertilizer). Untreated polluted sediments served as the blank in a non-controlled experiment. During the experimental period (30 days), bacterial density and biochemical oxygen demand were measured and functional genes were identified by screening. Quantitative measurements of pollutants and an eco-toxicological analysis (mortality of Corophium orientale) were carried out at the beginning and end of the experiments. The results demonstrated the high biodegradative capability achieved with the proposed technology and its strong reduction of pollutant concentrations and thus toxicity.


Asunto(s)
Bacterias/metabolismo , Bioingeniería/métodos , Restauración y Remediación Ambiental/métodos , Sedimentos Geológicos/microbiología , Hidrocarburos/metabolismo , Agua de Mar/microbiología , Contaminantes Químicos del Agua/metabolismo , Bacterias/genética , Biodegradación Ambiental , Sedimentos Geológicos/química , Hidrocarburos/química , Agua de Mar/química , Contaminantes Químicos del Agua/química
20.
Braz J Microbiol ; 46(2): 377-87, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26273252

RESUMEN

Three bacterial isolates identified as Alcanivorax borkumensis SK2, Rhodococcus erythropolis HS4 and Pseudomonas stutzeri SDM, based on 16S rRNA gene sequences, were isolated from crude oil enrichments of natural seawater. Single strains and four bacterial consortia designed by mixing the single bacterial cultures respectively in the following ratios: (Alcanivorax: Pseudomonas, 1:1), (Alcanivorax: Rhodococcus, 1:1), (Pseudomonas: Rhodococcus, 1:1), and (Alcanivorax: Pseudomonas: Rhodococcus, 1:1:1), were analyzed in order to evaluate their oil degrading capability. All experiments were carried out in microcosms systems containing seawater (with and without addition of inorganic nutrients) and crude oil (unique carbon source). Measures of total and live bacterial abundance, Card-FISH and quali-, quantitative analysis of hydrocarbons (GC-FID) were carried out in order to elucidate the co-operative action of mixed microbial populations in the process of biodegradation of crude oil. All data obtained confirmed the fundamental role of bacteria belonging to Alcanivorax genus in the degradation of linear hydrocarbons in oil polluted environments.


Asunto(s)
Alcanivoraceae/metabolismo , Petróleo/metabolismo , Pseudomonas stutzeri/metabolismo , Rhodococcus/metabolismo , Alcanivoraceae/clasificación , Alcanivoraceae/genética , Alcanivoraceae/aislamiento & purificación , Biotransformación , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Consorcios Microbianos , Datos de Secuencia Molecular , Filogenia , Pseudomonas stutzeri/clasificación , Pseudomonas stutzeri/genética , Pseudomonas stutzeri/aislamiento & purificación , ARN Ribosómico 16S/genética , Rhodococcus/clasificación , Rhodococcus/genética , Rhodococcus/aislamiento & purificación , Agua de Mar/microbiología , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA