Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38612547

RESUMEN

Protein self-assembling nanoparticles (NPs) can be used as carriers for antigen delivery to increase vaccine immunogenicity. NPs mimic the majority of invading pathogens, inducing a robust adaptive immune response and long-lasting protective immunity. In this context, we investigated the potential of NPs of different sizes and shapes-ring-, rod-like, and spherical particles-as carriers for bacterial oligosaccharides by evaluating in murine models the role of these parameters on the immune response. Oligosaccharides from Neisseria meningitidis type W capsular polysaccharide were conjugated to ring-shape or nanotubes of engineered Pseudomonas aeruginosa Hemolysin-corregulated protein 1 (Hcp1cc) and to spherical Helicobacter pylori ferritin. Glycoconjugated NPs were characterized using advanced technologies such as High-Performance Liquid Chromatography (HPLC), Asymmetric Flow-Field Flow fractionation (AF4), and Transmission electron microscopy (TEM) to verify their correct assembly, dimensions, and glycosylation degrees. Our results showed that spherical ferritin was able to induce the highest immune response in mice against the saccharide antigen compared to the other glycoconjugate NPs, with increased bactericidal activity compared to benchmark MenW-CRM197. We conclude that shape is a key attribute over size to be considered for glycoconjugate vaccine development.


Asunto(s)
Antiinfecciosos , Nanopartículas , Animales , Ratones , Glicoconjugados , Ferritinas , Oligosacáridos
2.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37047152

RESUMEN

The presentation of viral antigens on nanoparticles in multivalent arrays has emerged as a valuable technology for vaccines. On the nanoparticle surface, highly ordered, repetitive arrays of antigens can mimic their geometric arrangement on virion surfaces and elicit stronger humoral responses than soluble viral antigens. More recently, bacterial antigens have been presented on self-assembling protein nanoparticles and have elicited protective antibody and effective T-helper responses, further supporting the nanoparticle platform as a universal approach for stimulating potent immunogenicity. Here, we present the rational design, structural analysis, and immunogenicity of self-assembling ferritin nanoparticles displaying eight copies of the Neisseria meningitidis trimeric adhesin NadA. We engineered constructs consisting of two different NadA fragments, head only and head with stalk, that we fused to ferritin and expressed in Escherichia coli. Both fusion constructs self-assembled into the expected nanoparticles as determined by Cryo electron microscopy. In mice, the two nanoparticles elicited comparable NadA antibody levels that were 10- to 100-fold higher than those elicited by the corresponding NadA trimer subunits. Further, the NadAferritin nanoparticles potently induced complement-mediated serum bactericidal activity. These findings confirm the value of self-assembling nanoparticles for optimizing the immunogenicity of bacterial antigens and support the broad applicability of the approach to vaccine programs, especially for the presentation of trimeric antigens.


Asunto(s)
Nanopartículas , Neisseria meningitidis , Ratones , Animales , Ferritinas , Antígenos Bacterianos , Antígenos Virales , Anticuerpos Bloqueadores , Vacunas Combinadas , Nanopartículas/química
3.
FASEB J ; 34(8): 10329-10341, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32725956

RESUMEN

The classical complement pathway is triggered when antigen-bound immunoglobulins bind to C1q through their Fc region. While C1q binds to a single Fc with low affinity, a higher avidity stable binding of two or more of C1q globular heads initiates the downstream reactions of the complement cascade ultimately resulting in bacteriolysis. Synergistic bactericidal activity has been demonstrated when monoclonal antibodies recognize nonoverlapping epitopes of the same antigen. The aim of the present work was to investigate the synergistic effect between antibodies directed toward different antigens. To this purpose, we investigated the bactericidal activity induced by combinations of monoclonal antibodies (mAbs) raised against factor H-binding protein (fHbp) and Neisserial Heparin-Binding Antigen (NHBA), two major antigens included in Bexsero, the vaccine against Meningococcus B, for prevention from this devastating disease in infants and adolescents. Collectively, our results show that mAbs recognizing different antigens can synergistically activate complement even when each single Mab is not bactericidal, reinforcing the evidence that cooperative immunity induced by antigen combinations can represent a remarkable added value of multicomponent vaccines. Our study also shows that the synergistic effect of antibodies is modulated by the nature of the respective epitopes, as well as by the antigen density on the bacterial cell surface.


Asunto(s)
Anticuerpos Antibacterianos/inmunología , Anticuerpos Monoclonales/inmunología , Proteínas del Sistema Complemento/inmunología , Antígenos Bacterianos/inmunología , Proteínas de la Membrana Bacteriana Externa/inmunología , Proteínas Bacterianas/inmunología , Proteínas Portadoras/inmunología , Factor H de Complemento/inmunología , Epítopos/inmunología , Neisseria meningitidis/inmunología , Determinación de Anticuerpos Séricos Bactericidas/métodos
4.
Microb Cell Fact ; 20(1): 33, 2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33531008

RESUMEN

BACKGROUND: The display of recombinant proteins on cell surfaces has a plethora of applications including vaccine development, screening of peptide libraries, whole-cell biocatalysts and biosensor development for diagnostic, industrial or environmental purposes. In the last decades, a wide variety of surface display systems have been developed for the exposure of recombinant proteins on the surface of Escherichia coli, such as autotransporters and outer membrane proteins. RESULTS: In this study, we assess three approaches for the surface display of a panel of heterologous and homologous mature lipoproteins in E. coli: four from Neisseria meningitidis and four from the host strain that are known to be localised in the inner leaflet of the outer membrane. Constructs were made carrying the sequences coding for eight mature lipoproteins, each fused to the delivery portion of three different systems: the autotransporter adhesin involved in diffuse adherence-I (AIDA-I) from enteropathogenic E. coli, the Lpp'OmpA chimaera and a truncated form of the ice nucleation protein (INP), InaK-NC (N-terminal domain fused with C-terminal one) from Pseudomonas syringae. In contrast to what was observed for the INP constructs, when fused to the AIDA-I or Lpp'OmpA, most of the mature lipoproteins were displayed on the bacterial surface both at 37 and 25 °C as demonstrated by FACS analysis, confocal and transmission electron microscopy. CONCLUSIONS: To our knowledge this is the first study that compares surface display systems using a number of passenger proteins. We have shown that the experimental conditions, including the choice of the carrier protein and the growth temperature, play an important role in the translocation of mature lipoproteins onto the bacterial surface. Despite all the optimization steps performed with the InaK-NC anchor motif, surface exposure of the passenger proteins used in this study was not achieved. For our experimental conditions, Lpp'OmpA chimaera has proved to be an efficient surface display system for the homologous passenger proteins although cell lysis and phenotype heterogeneity were observed. Finally, AIDA-I was found to be the best surface display system for mature lipoproteins (especially heterologous ones) in the E. coli host strain with no inhibition of growth and only limited phenotype heterogeneity.


Asunto(s)
Proteínas Bacterianas/metabolismo , Escherichia coli/metabolismo , Lipoproteínas/metabolismo , Proteínas Bacterianas/ultraestructura , Membrana Celular/metabolismo , Escherichia coli/ultraestructura , Ingeniería Genética , Proteínas Recombinantes de Fusión/metabolismo
5.
Microsc Microanal ; 21(4): 791-5, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26223548

RESUMEN

Adjuvants are substances that enhance adaptive immune responses when formulated in a vaccine. Alum and MF59 are two vaccine adjuvants licensed for human vaccination. Their mode of action has not been completely elucidated. Here we show the first ultrastructural visualization of Alum and MF59 interaction with immune cells in vitro and in vivo. We observed that Alum is engulfed by cells as inclusions of laminae that are detectable within draining lymph nodes. MF59 is instead engulfed by cells in vitro as low-electron-dense lipid-like inclusions that display a vesicle pattern, as confirmed by confocal microscopy using fluorescently labeled MF59. However, lipid-like inclusions with different high- and low-electron-dense content are detected within cells of draining lymph nodes when injecting MF59. As high-electron-dense lipid-like inclusions are also detected upon injection of Alum, our results suggest that the low-electron-dense inclusions are formed by engulfed MF59, whereas the high-electron-dense inclusions are proper lipid inclusions. Thus, we demonstrated that vaccine adjuvants are engulfed as inclusions by lymph node cells and hypothesize that adjuvant treatment may modify lipid metabolism.


Asunto(s)
Adyuvantes Inmunológicos/farmacocinética , Compuestos de Alumbre/farmacocinética , Polisorbatos/farmacocinética , Escualeno/farmacocinética , Adyuvantes Inmunológicos/administración & dosificación , Compuestos de Alumbre/administración & dosificación , Animales , Endocitosis , Cuerpos de Inclusión/ultraestructura , Ratones Endogámicos C57BL , Microscopía , Polisorbatos/administración & dosificación , Escualeno/administración & dosificación
6.
J Virol ; 86(1): 262-76, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22031938

RESUMEN

We previously reported finding the RNA of a type K human endogenous retrovirus, HERV-K (HML-2), at high titers in the plasma of HIV-1-infected and cancer patients (R. Contreras-Galindo et al., J. Virol. 82:9329-9236, 2008.). The extent to which the HERV-K (HML-2) proviruses become activated and the nature of their activated viral RNAs remain important questions. Therefore, we amplified and sequenced the full-length RNA of the env gene of the type 1 and 2 HERV-K (HML-2) viruses collected from the plasma of seven HIV-1-infected patients over a period of 1 to 3 years and from five breast cancer patients in order to reconstruct the genetic evolution of these viruses. HERV-K (HML-2) RNA was found in plasma fractions of HIV-1 patients at a density of ∼1.16 g/ml that contained both immature and correctly processed HERV-K (HML-2) proteins and virus-like particles that were recognized by anti-HERV-K (HML-2) antibodies. RNA sequences from novel HERV-K (HML-2) proviruses were discovered, including K111, which is specifically active during HIV-1 infection. Viral RNA arose from complete proviruses and proviruses devoid of a 5' long terminal repeat, suggesting that the expression of HERV-K (HML-2) RNA in these patients may involve sense and antisense transcription. In HIV-1-infected individuals, the HERV-K (HML-2) viral RNA showed evidence of frequent recombination, accumulation of synonymous rather than nonsynonymous mutations, and conserved N-glycosylation sites, suggesting that some of the HERV-K (HML-2) viral RNAs have undergone reverse transcription and are under purifying selection. In contrast, HERV-K (HML-2) RNA sequences found in the blood of breast cancer patients showed no evidence of recombination and exhibited only sporadic viral mutations. This study suggests that HERV-K (HML-2) is active in HIV-1-infected patients, and the resulting RNA message reveals previously undiscovered HERV-K (HML-2) genomic sequences.


Asunto(s)
Retrovirus Endógenos/genética , Infecciones por VIH/virología , VIH-1/genética , ARN Viral/genética , Retrovirus Endógenos/clasificación , Retrovirus Endógenos/metabolismo , Genoma Viral , Infecciones por VIH/sangre , VIH-1/clasificación , VIH-1/metabolismo , Humanos , Datos de Secuencia Molecular , Filogenia , ARN Viral/sangre , ARN Viral/metabolismo , Recombinación Genética , Transcripción Reversa , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo
7.
NPJ Vaccines ; 8(1): 152, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37803013

RESUMEN

A maternal vaccine to protect neonates against Group B Streptococcus invasive infection is an unmet medical need. Such a vaccine should ideally be offered during the third trimester of pregnancy and induce strong immune responses after a single dose to maximize the time for placental transfer of protective antibodies. A key target antigen is the capsular polysaccharide, an anti-phagocytic virulence factor that elicits protective antibodies when conjugated to carrier proteins. The most prevalent polysaccharide serotypes conjugated to tetanus or diphtheria toxoids have been tested in humans as monovalent and multivalent formulations, showing excellent safety profiles and immunogenicity. However, responses were suboptimal in unprimed individuals after a single shot, the ideal schedule for vaccination during the third trimester of pregnancy. In the present study, we obtained and optimized self-assembling virus-like particles conjugated to Group B Streptococcus capsular polysaccharides. The resulting glyco-nanoparticles elicited strong immune responses in mice already after one immunization, providing pre-clinical proof of concept for a single-dose vaccine.

8.
Dev Biol ; 349(2): 179-91, 2011 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-20920500

RESUMEN

Oral-facial-digital type I (OFDI) syndrome is an X-linked male lethal developmental disorder. It is ascribed to ciliary dysfunction and characterized by malformation of the face, oral cavity, and digits. Conditional inactivation using different Cre lines allowed us to study the role of the Ofd1 transcript in limb development. Immunofluorescence and ultrastructural studies showed that Ofd1 is necessary for correct ciliogenesis in the limb bud but not for cilia outgrowth, in contrast to what was previously shown for the embryonic node. Mutants with mesenchymal Ofd1 inactivation display severe polydactyly with loss of antero-posterior (A/P) digit patterning and shortened long bones. Loss of digit identity was found to be associated with a progressive loss of Shh signaling and an impaired processing of Gli3, whereas defects in limb outgrowth were due to defective Ihh signaling and to mineralization defects during endochondral bone formation. Our data demonstrate that Ofd1 plays a role in regulating digit number and identity during limb and skeletal patterning increasing insight on the functional role of primary cilia during development.


Asunto(s)
Huesos/embriología , Cilios/fisiología , Esbozos de los Miembros/embriología , Proteínas/metabolismo , Animales , Western Blotting , Pesos y Medidas Corporales , Técnica del Anticuerpo Fluorescente , Proteínas Hedgehog/metabolismo , Técnicas Histológicas , Hibridación in Situ , Etiquetado Corte-Fin in Situ , Factores de Transcripción de Tipo Kruppel/metabolismo , Esbozos de los Miembros/metabolismo , Esbozos de los Miembros/ultraestructura , Masculino , Ratones , Microscopía Electrónica de Transmisión , Proteínas del Tejido Nervioso/metabolismo , Síndromes Orofaciodigitales/embriología , Transducción de Señal/fisiología , Proteína Gli3 con Dedos de Zinc
9.
Vaccine ; 40(45): 6520-6527, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36202640

RESUMEN

Moraxella catarrhalis is an important and common respiratory pathogen that can cause Otitis Media, Community Acquired Pneumonia, and has been associated with an increased risk of exacerbations in chronic obstructive pulmonary disease in adults, leading to morbidity and mortality. Its ubiquitous surface protein A2 (UspA2) has been shown to interact with host structures and extracellular matrix proteins, suggesting a role at an early stage of infection and a contribution to bacterial serum resistance. The UspA proteins are homo-trimeric autotransporters that appear as a lollipop-shaped structure in electron micrographs. They are composed of an N-terminal head with adhesive properties, followed by a stalk, which ends by an amphipathic helix and a C-terminal membrane domain. The three family members UspA1, UspA2 and UspA2H, present different amino acid signatures both at the head and membrane-spanning regions. By combining electron microscopy, hydrogen deuterium exchange mass spectrometry and protein modeling, we identified a shared and repeated epitope recognized by FHUSPA2/10, a potent cross-bactericidal monoclonal antibody raised by UspA2 and deduced key amino acids involved in the binding. The finding strengthens the potential of UspA2 to be incorporated in a vaccine formulation against M. catarrhalis.


Asunto(s)
Antibacterianos , Anticuerpos Monoclonales , Moraxella catarrhalis , Adulto , Humanos , Aminoácidos/metabolismo , Anticuerpos Monoclonales/farmacología , Proteínas de la Membrana Bacteriana Externa/inmunología , Epítopos/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Sistemas de Secreción Tipo V/metabolismo , Antibacterianos/farmacología
10.
PLoS One ; 17(9): e0273322, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36112575

RESUMEN

Recombinant protein-based vaccines are a valid and safer alternative to traditional vaccines based on live-attenuated or killed pathogens. However, the immune response of subunit vaccines is generally lower compared to that elicited by traditional vaccines and usually requires the use of adjuvants. The use of self-assembling protein nanoparticles, as a platform for vaccine antigen presentation, is emerging as a promising approach to enhance the production of protective and functional antibodies. In this work we demonstrated the successful repetitive antigen display of the C-terminal ß-barrel domain of factor H binding protein, derived from serogroup B Meningococcus on the surface of different self-assembling nanoparticles using genetic fusion. Six nanoparticle scaffolds were tested, including virus-like particles with different sizes, geometries, and physicochemical properties. Combining computational and structure-based rational design we were able generate antigen-fused scaffolds that closely aligned with three-dimensional structure predictions. The chimeric nanoparticles were produced as recombinant proteins in Escherichia coli and evaluated for solubility, stability, self-assembly, and antigen accessibility using a variety of biophysical methods. Several scaffolds were identified as being suitable for genetic fusion with the ß-barrel from fHbp, including ferritin, a de novo designed aldolase from Thermotoga maritima, encapsulin, CP3 phage coat protein, and the Hepatitis B core antigen. In conclusion, a systematic screening of self-assembling nanoparticles has been applied for the repetitive surface display of a vaccine antigen. This work demonstrates the capacity of rational structure-based design to develop new chimeric nanoparticles and describes a strategy that can be utilized to discover new nanoparticle-based approaches in the search for vaccines against bacterial pathogens.


Asunto(s)
Vacunas Meningococicas , Nanopartículas , Neisseria meningitidis , Aldehído-Liasas , Antígenos , Vacunas Bacterianas , Proteínas Portadoras , Factor H de Complemento , Ferritinas , Antígenos del Núcleo de la Hepatitis B , Nanopartículas/química , Neisseria meningitidis/genética , Proteínas Recombinantes , Vacunas Combinadas , Vacunas de Subunidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA