Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Pain Res (Lausanne) ; 5: 1372814, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38601923

RESUMEN

Accurate and objective pain evaluation is crucial in developing effective pain management protocols, aiming to alleviate distress and prevent patients from experiencing decreased functionality. A multimodal automatic assessment framework for acute pain utilizing video and heart rate signals is introduced in this study. The proposed framework comprises four pivotal modules: the Spatial Module, responsible for extracting embeddings from videos; the Heart Rate Encoder, tasked with mapping heart rate signals into a higher dimensional space; the AugmNet, designed to create learning-based augmentations in the latent space; and the Temporal Module, which utilizes the extracted video and heart rate embeddings for the final assessment. The Spatial-Module undergoes pre-training on a two-stage strategy: first, with a face recognition objective learning universal facial features, and second, with an emotion recognition objective in a multitask learning approach, enabling the extraction of high-quality embeddings for the automatic pain assessment. Experiments with the facial videos and heart rate extracted from electrocardiograms of the BioVid database, along with a direct comparison to 29 studies, demonstrate state-of-the-art performances in unimodal and multimodal settings, maintaining high efficiency. Within the multimodal context, 82.74% and 39.77% accuracy were achieved for the binary and multi-level pain classification task, respectively, utilizing 9.62 million parameters for the entire framework.

2.
IEEE Open J Eng Med Biol ; 3: 108-114, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36860496

RESUMEN

Goal: To develop a computationally efficient and unbiased synthetic data generator for large-scale in silico clinical trials (CTs). Methods: We propose the BGMM-OCE, an extension of the conventional BGMM (Bayesian Gaussian Mixture Models) algorithm to provide unbiased estimations regarding the optimal number of Gaussian components and yield high-quality, large-scale synthetic data at reduced computational complexity. Spectral clustering with efficient eigenvalue decomposition is applied to estimate the hyperparameters of the generator. A case study is conducted to compare the performance of BGMM-OCE against four straightforward synthetic data generators for in silico CTs in hypertrophic cardiomyopathy (HCM). Results: The BGMM-OCE generated 30000 virtual patient profiles having the lowest coefficient-of-variation (0.046), inter- and intra-correlation differences (0.017, and 0.016, respectively) with the real ones in reduced execution time. Conclusions: BGMM-OCE overcomes the lack of population size in HCM which obscures the development of targeted therapies and robust risk stratification models.

3.
Comput Biol Med ; 134: 104520, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34118751

RESUMEN

Virtual population generation is an emerging field in data science with numerous applications in healthcare towards the augmentation of clinical research databases with significant lack of population size. However, the impact of data augmentation on the development of AI (artificial intelligence) models to address clinical unmet needs has not yet been investigated. In this work, we assess whether the aggregation of real with virtual patient data can improve the performance of the existing risk stratification and disease classification models in two rare clinical domains, namely the primary Sjögren's Syndrome (pSS) and the hypertrophic cardiomyopathy (HCM), for the first time in the literature. To do so, multivariate approaches, such as, the multivariate normal distribution (MVND), and straightforward ones, such as, the Bayesian networks, the artificial neural networks (ANNs), and the tree ensembles are compared against their performance towards the generation of high-quality virtual data. Both boosting and bagging algorithms, such as, the Gradient boosting trees (XGBoost), the AdaBoost and the Random Forests (RFs) were trained on the augmented data to evaluate the performance improvement for lymphoma classification and HCM risk stratification. Our results revealed the favorable performance of the tree ensemble generators, in both domains, yielding virtual data with goodness-of-fit 0.021 and KL-divergence 0.029 in pSS and 0.029, 0.027 in HCM, respectively. The application of the XGBoost on the augmented data revealed an increase by 10.9% in accuracy, 10.7% in sensitivity, 11.5% in specificity for lymphoma classification and 16.1% in accuracy, 16.9% in sensitivity, 13.7% in specificity in HCM risk stratification.


Asunto(s)
Algoritmos , Inteligencia Artificial , Teorema de Bayes , Humanos , Redes Neurales de la Computación , Medición de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA