Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Toxicol Appl Pharmacol ; 241(2): 230-45, 2009 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-19716841

RESUMEN

A common animal model of chemical hepatocarcinogenesis was used to examine the utility of transcriptomic and proteomic data to identify early biomarkers related to chemically induced carcinogenesis. N-nitrosomorpholine, a frequently used genotoxic model carcinogen, was applied via drinking water at 120 mg/L to male Wistar rats for 7 weeks followed by an exposure-free period of 43 weeks. Seven specimens of each treatment group (untreated control and 120 mg/L N-nitrosomorpholine in drinking water) were sacrificed at nine time points during and after N-nitrosomorpholine treatment. Individual samples from the liver were prepared for histological and toxicogenomic analyses. For histological detection of preneoplastic and neoplastic tissue areas, sections were stained using antibodies against the placental form of glutathione-S-transferase (GST-P). Gene and protein expression profiles of liver tissue homogenates were analyzed using RG-U34A Affymetrix rat gene chips and two-dimensional gel electrophoresis-based proteomics, respectively. In order to compare results obtained by histopathology, transcriptomics and proteomics, GST-P-stained liver sections were evaluated morphometrically, which revealed a parallel time course of the area fraction of preneoplastic lesions and gene plus protein expression patterns. On the transcriptional level, an increase of hepatic GST-P expression was detectable as early as 3 weeks after study onset. Comparing deregulated genes and proteins, eight species were identified which showed a corresponding expression profile on both expression levels. Functional analysis suggests that these genes and corresponding proteins may be useful as biomarkers of early hepatocarcinogenesis.


Asunto(s)
Neoplasias Hepáticas Experimentales/metabolismo , Hígado/efectos de los fármacos , Nitrosaminas/toxicidad , Animales , Biomarcadores de Tumor/biosíntesis , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Glutatión Transferasa/biosíntesis , Humanos , Hígado/metabolismo , Hígado/patología , Neoplasias Hepáticas Experimentales/inducido químicamente , Neoplasias Hepáticas Experimentales/patología , Masculino , Lesiones Precancerosas/inducido químicamente , Lesiones Precancerosas/metabolismo , Lesiones Precancerosas/patología , Proteómica , Ratas , Ratas Wistar , Toxicogenética
2.
J Mass Spectrom ; 35(1): 1-12, 2000 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-10633229

RESUMEN

A new model for the ionization processes in UV matrix-assisted laser desorption/ionization (MALDI) which accounts for the major phenomena observed is presented and discussed. The model retains elements of earlier approaches, such as photoionization and photochemical reactions, but it redefines these in the light of new working questions, most importantly why only singly charged ions are detected. Based on experimental evidence, the formation of singly and multiply charged clusters by a deficiency/excess of ions and also by photoionization and subsequent photochemical processes is pointed out to be the major ionization processes, which typically occur in parallel. The generation of electrons and their partial loss into the surrounding vacuum and solid, on the one hand, results in a positively charged ion-neutral plume facilitating a high overall ionization yield. On the other hand, these electrons, and also the large excess of protonated matrix ions in the negative ion mode, induce effective ion reneutralization in the plume. These neutralization processes are most effective for the highly charged cluster ions initially formed. Their fragmentation behaviour is evidenced in fast metastable fragmentation characteristics and agrees well with an electron capture dissociation mechanism and the enthalpy transfer upon neutralization forms the rationale for the prominent fragmentation and intense chemical noise accompanying successful MALDI. Within the course of the paper, cross-correlations with other desorption/ionization techniques and with earlier discussions on their mechanisms are drawn.


Asunto(s)
Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Iones , Modelos Químicos , Espectrometría de Masa de Ion Secundario/métodos , Rayos Ultravioleta
3.
Anal Chem ; 73(24): 5812-21, 2001 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-11791549

RESUMEN

Despite the spreading applications of matrix-assisted laser desorption/ionization (MALDI), its fundamental understanding is still limited and under constant debate. This report focuses on the initial state of the analyte in the host matrix. pH indicator dyes serve as molecular probes since their color directly indicates their (de)protonation state. For a set of matrixes at their intrinsic pH, solution color was maintained, delivering clear proof for analyte incorporation in the solution charge state. Moreover, substantial solvent inclusion is determined by 1H NMR spectroscopy. MALDI mass spectra show a clear correlation to the dye charge state. However, the dominant solution species are not observed exclusively in the mass spectra, pointing to a proton transfer or proton neutralization activity of the matrix.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA