Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Plant J ; 107(5): 1478-1489, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34174129

RESUMEN

Phosphoglycerate mutases (PGAMs) catalyse the reversible isomerisation of 3-phosphoglycerate and 2-phosphoglycerate, a step of glycolysis. PGAMs can be sub-divided into 2,3-bisphosphoglycerate-dependent (dPGAM) and -independent (iPGAM) enzymes. In plants, phosphoglycerate isomerisation is carried out by cytosolic iPGAM. Despite its crucial role in catabolism, little is known about post-translational modifications of plant iPGAM. In Arabidopsis thaliana, phosphoproteomics analyses have previously identified an iPGAM phosphopeptide where serine 82 is phosphorylated. Here, we show that this phosphopeptide is less abundant in dark-adapted compared to illuminated Arabidopsis leaves. In silico comparison of iPGAM protein sequences and 3D structural modelling of AtiPGAM2 based on non-plant iPGAM enzymes suggest a role for phosphorylated serine in the catalytic reaction mechanism. This is confirmed by the activity (or the lack thereof) of mutated recombinant Arabidopsis iPGAM2 forms, affected in different steps of the reaction mechanism. We thus propose that the occurrence of the S82-phosphopeptide reflects iPGAM2 steady-state catalysis. Based on this assumption, the metabolic consequences of a higher iPGAM activity in illuminated versus darkened leaves are discussed.


Asunto(s)
Arabidopsis/enzimología , Fosfoglicerato Mutasa/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácidos Glicéricos/metabolismo , Glucólisis , Modelos Estructurales , Fosfoglicerato Mutasa/genética , Fosforilación , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Proteínas Recombinantes , Serina/metabolismo
2.
Plant Cell Environ ; 42(9): 2567-2583, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31134633

RESUMEN

The photorespiratory cycle is a crucial pathway in photosynthetic organisms because it removes toxic 2-phosphoglycolate made by the oxygenase activity of ribulose-1,5-bisphosphate carboxylase/oxygenase and retrieves its carbon as 3-phosphoglycerate. Mitochondrial serine hydroxymethyltransferase 1 (SHMT1) is an essential photorespiratory enzyme converting glycine to serine. SHMT1 regulation remains poorly understood although it could involve the phosphorylation of serine 31. Here, we report the complementation of Arabidopsis thaliana shm1-1 by SHMT1 wild-type, phosphorylation-mimetic (S31D) or nonphophorylatable (S31A) forms. All SHMT1 forms could almost fully complement the photorespiratory growth phenotype of shm1-1; however, each transgenic line had only 50% of normal SHMT activity. In response to either a salt or drought stress, Compl-S31D lines showed a more severe growth deficiency compared with the other transgenic lines. This sensitivity to salt appeared to reflect reduced SHMT1-S31D protein amounts and a lower activity that impacted leaf metabolism leading to proline underaccumulation and overaccumulation of polyamines. The S31D mutation in SHMT1 also led to a reduction in salt-induced and ABA-induced stomatal closure. Taken together, our results highlight the importance of maintaining photorespiratory SHMT1 activity in salt and drought stress conditions and indicate that SHMT1 S31 phosphorylation could be involved in modulating SHMT1 protein stability.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Glicina Hidroximetiltransferasa/metabolismo , Estomas de Plantas/fisiología , Tolerancia a la Sal/genética , Ácido Abscísico/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Dióxido de Carbono , Respiración de la Célula , Deshidratación , Sequías , Prueba de Complementación Genética , Fosforilación , Fotosíntesis , Plantas Modificadas Genéticamente , Estrés Fisiológico
3.
Plant J ; 89(5): 1031-1041, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27943466

RESUMEN

Arabidopsis thaliana SNF1-related-kinase 1 (SnRK1)-activating kinase 1 (AtSnAK1) and AtSnAK2 have been shown to phosphorylate in vitro and activate the energy signalling integrator, SnRK1. To clarify this signalling cascade in planta, a genetic- and molecular-based approach was developed. Homozygous single AtSnAK1 and AtSnAK2 T-DNA insertional mutants did not display an apparent phenotype. Crossing of the single mutants did not allow the isolation of double-mutant plants, whereas self-pollinating the S1-/- S2+/- sesquimutant specifically gave approximatively 22% individuals in their offspring that, when rescued on sugar-supplemented media in vitro, were shown to be AtSnAK1 AtSnAK2 double mutants. Interestingly, this was not obtained in the case of the other sesquimutant, S1+/- S2-/-. Although reduced in size, the double mutant had the capacity to produce flowers, but not seeds. Immunological characterization established the T-loop of the SnRK1 catalytic subunit to be non-phosphorylated in the absence of both SnAKs. When the double mutant was complemented with a DNA construct containing an AtSnAK2 open reading frame driven by its own promoter, a normal phenotype was restored. Therefore, wild-type plant growth and development is dependent on the presence of SnAK in vivo, and this is correlated with SnRK1 phosphorylation. These data show that both SnAKs are kinases phosphorylating SnRK1, and thereby they contribute to energy signalling in planta.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Sistemas de Lectura Abierta/genética , Fosforilación/genética , Fosforilación/fisiología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal/genética , Transducción de Señal/fisiología
4.
Plant Cell ; 26(6): 2633-2647, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24963053

RESUMEN

In Arabidopsis thaliana, seven cyclin-dependent kinase (CDK) inhibitors have been identified, designated interactors of CDKs or Kip-related proteins (KRPs). Here, the function of KRP6 was investigated during cell cycle progression in roots infected by plant-parasitic root-knot nematodes. Contrary to expectations, analysis of Meloidogyne incognita-induced galls of KRP6-overexpressing lines revealed a role for this particular KRP as an activator of the mitotic cell cycle. In accordance, KRP6-overexpressing suspension cultures displayed accelerated entry into mitosis, but delayed mitotic progression. Likewise, phenotypic analysis of cultured cells and nematode-induced giant cells revealed a failure in mitotic exit, with the appearance of multinucleated cells as a consequence. Strong KRP6 expression upon nematode infection and the phenotypic resemblance between KRP6 overexpression cell cultures and root-knot morphology point toward the involvement of KRP6 in the multinucleate and acytokinetic state of giant cells. Along these lines, the parasite might have evolved to manipulate plant KRP6 transcription to the benefit of gall establishment.

5.
J Exp Bot ; 67(10): 3149-63, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26896850

RESUMEN

Metabolic and physiological analyses of Arabidopsis thaliana glycolate oxidase (GOX) mutant leaves were performed to understand the development of the photorespiratory phenotype after transfer from high CO2 to air. We show that two Arabidopsis genes, GOX1 and GOX2, share a redundant photorespiratory role. Air-grown single gox1 and gox2 mutants grew normally and no significant differences in leaf metabolic levels and photosynthetic activities were found when compared with wild-type plants. To study the impact of a highly reduced GOX activity on plant metabolism, both GOX1 and GOX2 expression was knocked-down using an artificial miRNA strategy. Air-grown amiRgox1/2 plants with a residual 5% GOX activity exhibited a severe growth phenotype. When high-CO2-grown adult plants were transferred to air, the photosynthetic activity of amiRgox1/2 was rapidly reduced to 50% of control levels, and a high non-photochemical chlorophyll fluorescence quenching was maintained. (13)C-labeling revealed that daily assimilated carbon accumulated in glycolate, leading to reduced carbon allocation to sugars, organic acids, and amino acids. Such changes were not always mirrored in leaf total metabolite levels, since many soluble amino acids increased after transfer, while total soluble protein, RuBisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase), and chlorophyll amounts decreased in amiRgox1/2 plants. The senescence marker, SAG12, was induced only in amiRgox1/2 rosettes after transfer to air. The expression of maize photorespiratory GOX in amiRgox1/2 abolished all observed phenotypes. The results indicate that the inhibition of the photorespiratory cycle negatively impacts photosynthesis, alters carbon allocation, and leads to early senescence in old rosette leaves.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Arabidopsis/metabolismo , Hojas de la Planta/metabolismo , Envejecimiento/metabolismo , Envejecimiento/fisiología , Oxidorreductasas de Alcohol/fisiología , Arabidopsis/enzimología , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Fotosíntesis/fisiología , Hojas de la Planta/enzimología , Hojas de la Planta/fisiología
6.
Plant J ; 75(3): 515-25, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23617622

RESUMEN

SNF1-related protein kinase-1 (SnRK1), the plant kinase homolog of mammalian AMP-activated protein kinase (AMPK), is a sensor that maintains cellular energy homeostasis via control of anabolism/catabolism balance. AMPK-dependent phosphorylation of p27(KIP1) affects cell-cycle progression, autophagy and apoptosis. Here, we show that SnRK1 phosphorylates the Arabidopsis thaliana cyclin-dependent kinase inhibitor p27(KIP1) homologs AtKRP6 and AtKRP7, thus extending the role of this kinase to regulation of cell-cycle progression. AtKRP6 and 7 were phosphorylated in vitro by a recombinant activated catalytic subunit of SnRK1 (AtSnRK1α1). Tandem mass spectrometry and site-specific mutagenesis identified Thr152 and Thr151 as the phosphorylated residues on AtKRP6- and AtKRP7, respectively. AtSnRK1 physically interacts with AtKRP6 in the nucleus of transformed BY-2 tobacco protoplasts, but, in contrast to mammals, the AtKRP6 Thr152 phosphorylation state alone did not modify its nuclear localization. Using a heterologous yeast system, consisting of a cdc28 yeast mutant complemented by A. thaliana CDKA;1, cell proliferation was shown to be abolished by AtKRP6(WT) and by the non-phosphorylatable form AtKRP6(T152A) , but not by the phosphorylation-mimetic form AtKRP6(T152D). Moreover, A. thaliana SnRK1α1/KRP6 double over-expressor plants showed an attenuated AtKRP6-associated phenotype (strongly serrated leaves and inability to undergo callogenesis). Furthermore, this severe phenotype was not observed in AtKRP6(T152D) over-expressor plants. Overall, these results establish that the energy sensor AtSnRK1 plays a cardinal role in the control of cell proliferation in A. thaliana plants through inhibition of AtKRP6 biological function by phosphorylation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Portadoras/metabolismo , Metabolismo Energético , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencia de Aminoácidos , Arabidopsis/citología , Proteínas de Arabidopsis/genética , Proteínas Portadoras/genética , Proteínas de Ciclo Celular , Proliferación Celular , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Homología de Secuencia de Aminoácido , Treonina/metabolismo
7.
Methods Mol Biol ; 2792: 19-27, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38861075

RESUMEN

Besides the historical and traditional use of nuclear magnetic resonance (NMR) spectroscopy as a structure elucidation tool for proteins and metabolites, its quantification ability allows the determination of metabolite amounts and therefore enzymatic activity measurements. For this purpose, 1H-NMR with adapted water pulse pre-saturation sequences and calibration curves with commercial standard solutions can be used to quantify the photorespiratory cycle intermediates, 2-phosphoglycolate and glycolate, associated with the phosphoglycolate phosphatase reaction. The intensity of the 1H-NMR signal of glycolate produced by the activity of purified recombinant Arabidopsis thaliana PGLP1 can therefore be used to determine PGLP1 enzymatic activities and kinetic parameters.


Asunto(s)
Arabidopsis , Glicolatos , Espectroscopía de Resonancia Magnética , Monoéster Fosfórico Hidrolasas , Glicolatos/metabolismo , Glicolatos/química , Monoéster Fosfórico Hidrolasas/metabolismo , Arabidopsis/metabolismo , Arabidopsis/enzimología , Espectroscopía de Resonancia Magnética/métodos , Proteínas de Arabidopsis/metabolismo , Pruebas de Enzimas/métodos , Cinética , Proteínas Recombinantes/metabolismo
8.
Methods Mol Biol ; 2792: 29-39, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38861076

RESUMEN

Phosphoglycolate phosphatase (PGLP) dephosphorylates 2-phosphoglycolate to glycolate that can be further metabolized to glyoxylate by glycolate oxidase (GOX) via an oxidative reaction that uses O2 and releases H2O2. The oxidation of o-dianisidine by H2O2 catalyzed by a peroxidase can be followed in real time by an absorbance change at 440 nm. Based on these reactions, a spectrophotometric method for measuring PGLP activity using a coupled reaction with recombinant Arabidopsis thaliana GOX is described. This protocol has been used successfully with either purified PGLP or total soluble proteins extracted from Arabidopsis rosette leaves.


Asunto(s)
Oxidorreductasas de Alcohol , Arabidopsis , Monoéster Fosfórico Hidrolasas , Proteínas Recombinantes , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/metabolismo , Oxidorreductasas de Alcohol/metabolismo , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/química , Monoéster Fosfórico Hidrolasas/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Glicolatos/metabolismo , Pruebas de Enzimas/métodos , Peróxido de Hidrógeno/metabolismo , Oxidación-Reducción , Hojas de la Planta/metabolismo , Hojas de la Planta/enzimología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Espectrofotometría/métodos
9.
Methods Mol Biol ; 2792: 97-111, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38861081

RESUMEN

To measure the kinetic properties of photorespiratory enzymes, it is necessary to work with purified proteins. Protocols to purify photorespiratory enzymes from leaves of various plant species require several time-consuming steps. It is now possible to produce large quantities of recombinant proteins in bacterial cells. They can be rapidly purified as histidine-tagged recombinant proteins by immobilized metal affinity chromatography using Ni2+-NTA-agarose. This chapter describes protocols to purify several Arabidopsis thaliana His-tagged recombinant photorespiratory enzymes (phosphoglycolate phosphatase, glycolate oxidase, and hydroxypyruvate reductase) from Escherichia coli cell cultures using two bacterial strain-plasmid systems: BL21(DE3)-pET and LMG194-pBAD.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Escherichia coli , Hidroxipiruvato Reductasa , Monoéster Fosfórico Hidrolasas , Arabidopsis/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Hidroxipiruvato Reductasa/genética , Hidroxipiruvato Reductasa/metabolismo , Hidroxipiruvato Reductasa/química , Monoéster Fosfórico Hidrolasas/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/aislamiento & purificación , Monoéster Fosfórico Hidrolasas/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/aislamiento & purificación , Proteínas de Arabidopsis/química , Histidina/metabolismo , Histidina/genética , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Oxidorreductasas de Alcohol/aislamiento & purificación , Oxidorreductasas de Alcohol/química , Cromatografía de Afinidad/métodos , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo
10.
New Phytol ; 199(2): 505-519, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23574394

RESUMEN

The development of nematode feeding sites induced by root-knot nematodes involves the synchronized activation of cell cycle processes such as acytokinetic mitoses and DNA amplification. A number of key cell cycle genes are reported to be critical for nematode feeding site development. However, it remains unknown whether plant cyclin-dependent kinase (CDK) inhibitors such as the Arabidopsis interactor/inhibitor of CDK (ICK)/Kip-related protein (KRP) family are involved in nematode feeding site development. This study demonstrates the involvement of Arabidopsis ICK2/KRP2 and ICK1/KRP1 in the control of mitosis to endoreduplication in galls induced by the root-knot nematode Meloidogyne incognita. Using ICK/KRP promoter-GUS fusions and mRNA in situ hybridizations, we showed that ICK2/KRP2, ICK3/KRP5 and ICK4/KRP6 are expressed in galls after nematode infection. Loss-of-function mutants have minor effects on gall development and nematode reproduction. Conversely, overexpression of both ICK1/KRP1 and ICK2/KRP2 impaired mitosis in giant cells and blocked neighboring cell proliferation, resulting in a drastic reduction of gall size. Studying the dynamics of protein expression demonstrated that protein levels of ICK2/KRP2 are tightly regulated during giant cell development and reliant on the presence of the nematode. This work demonstrates that impeding cell cycle progression by means of ICK1/KRP1 and ICK2/KRP2 overexpression severely restricts gall development, leading to a marked limitation of root-knot nematode development and reduced numbers of offspring.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/parasitología , Proteínas de Ciclo Celular/metabolismo , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/metabolismo , Conducta Alimentaria , Raíces de Plantas/parasitología , Tylenchoidea/fisiología , Animales , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Núcleo Celular/metabolismo , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Células Gigantes/citología , Células Gigantes/metabolismo , Mitosis , Tamaño de los Orgánulos , Raíces de Plantas/genética , Tumores de Planta/genética , Tumores de Planta/parasitología , Plantas Modificadas Genéticamente , Ploidias , Transporte de Proteínas/genética , Tylenchoidea/crecimiento & desarrollo , Tylenchoidea/metabolismo
11.
Plant J ; 47(3): 395-407, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16771839

RESUMEN

The proliferating cell nuclear antigen (PCNA) functions as a sliding clamp for DNA polymerase, and is thus a key actor in DNA replication. It is also involved in DNA repair, maintenance of heterochromatic regions throughout replication, cell cycle regulation and programmed cell death. Identification of PCNA partners is therefore necessary for understanding these processes. Here we identify two Arabidopsis SET-domain proteins that interact with PCNA: ATXR5 and ATXR6. A truncated ATXR5Deltaex2, incapable of interacting with PCNA, also occurs in planta. ATXR6, upregulated during the S phase, is upregulated by AtE2F transcription factors, suggesting that it is required for S-phase progression. The two proteins differ in their subcellular localization: ATXR5 has a dual localization in plastids and in the nucleus, whereas ATXR6 is solely nuclear. This indicates that the two proteins may play different roles in plant cells. However, overexpression of either ATXR5 or ATXR6 causes male sterility because of the degeneration of defined cell types. Taken together, our results suggest that both proteins may play a role in the cell cycle or DNA replication, and that the activity of ATXR5 may be regulated via its subcellular localization.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiología , Proteínas Nucleares/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Secuencias de Aminoácidos , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Núcleo Celular/metabolismo , Proliferación Celular , Replicación del ADN , Factores de Transcripción E2F/metabolismo , Factores de Transcripción E2F/fisiología , Flores/crecimiento & desarrollo , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas Fluorescentes Verdes/análisis , Proteínas Nucleares/química , Proteínas Nucleares/genética , Infertilidad Vegetal , Plastidios/metabolismo , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/análisis , Técnicas del Sistema de Dos Híbridos
12.
Plant Physiol ; 130(4): 1871-82, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12481070

RESUMEN

In all eukaryotes, cell cycle progression is controlled by cyclin-dependent kinases (CDKs) whose activity is regulated at several levels including inhibition by CDK inhibitors. Here, we report a comparative molecular and functional analysis of the tobacco (Nicotiana tomentosiformis) CDK inhibitor, NtKIS1a, and its spliced variant, NtKIS1b. The C-terminal end of NtKIS1a shares strong sequence similarity with mammalian CIP/KIP inhibitors, which is not the case for NtKIS1b. Consistent with this, NtKIS1a but not NtKIS1b inhibits in vitro the kinase activity of CDK/cyclin complexes, and tobacco (Nicotiana tabacum) D-type cyclins and an A-type CDK are NtKIS1a, but not NtKIS1b, interacting partners. Although both NtKIS1a and NtKIS1b transcripts are mainly found in flowers and more precisely in stamens, NtKIS1b transcript levels are cell cycle regulated, whereas those of NtKIS1a remain constant during the cell cycle. NtKIS1a and NtKIS1b fused to fluorescent proteins are localized in the nucleus when transiently expressed in onion epidermal cells. Furthermore, there is no competition for their nuclear localization when they are simultaneously overexpressed. In vitro competition toward CDK kinase activity suggests that NtKIS1b is a strong competitor of NtKIS1a. Arabidopsis plants overexpressing NtKIS1a-green fluorescent protein (GFP) or NtKIS1b-GFP fusion proteins were obtained. In these plants, the fusion proteins are still localized in the nucleus. Interestingly, NtKIS1a-GFP-overexpressing plants display strong morphological modifications and a reduced CDK kinase activity, whereas NtKIS1b-GFP-overexpressing plants display a wild-type phenotype including a wild-type CDK kinase activity. Our results strongly suggest that the inhibition of the kinase activity is responsible for the phenotypic modifications.


Asunto(s)
Proteínas de Ciclo Celular/genética , Nicotiana/genética , Proteínas Nucleares/genética , Empalme Alternativo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Ciclo Celular/metabolismo , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , ADN Complementario/química , ADN Complementario/genética , ADN de Plantas/química , ADN de Plantas/genética , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Proteínas Fluorescentes Verdes , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Datos de Secuencia Molecular , Proteínas Nucleares/metabolismo , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Nicotiana/fisiología
13.
J Cell Sci ; 115(Pt 5): 973-82, 2002 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-11870216

RESUMEN

Plant development requires stringent controls between cell proliferation and cell differentiation. Proliferation is positively regulated by cyclin dependent kinases (CDKs). Acting in opposition to CDKs are CDK inhibitors (CKIs). The first tobacco CKI (NtKIS1a) identified was shown to inhibit in vitro the kinase activity of CDK/cyclin complexes and to interact with CDK and D-cyclins. However, these features, which are common to other plant and animal CKIs already characterised, did not provide information about the function of NtKIS1a in plants. Thus, to gain insight into the role of NtKIS1a and especially its involvement in cell proliferation during plant development, we generated transgenic Arabidopsis thaliana plants that overexpress NtKIS1a. These plants showed reduced growth with smaller organs that contained larger cells. Moreover, these plants displayed modifications in plant morphology. These results demonstrated that plant organ size and shape, as well as organ cell number and cell size, might be controlled by modulation of the single NtKIS1a gene activity. Since in mammals, D-cyclins control cell cycle progression in a CDK-dependent manner but also play a CDK independent role by sequestering the CKIs p27(Kip1) and p21(Cip1), we tested the significance of cyclin D-CKI interaction within a living plant. With this aim, NtKIS1a and AtCycD3;1 were overexpressed simultaneously in plants by two different methods. Our results demonstrated that overexpression of the CKI NtKIS1a restores essentially normal development in plants overexpressing AtCycD3;1, providing the first evidence of cyclin D-CKI co-operation within the context of a living plant.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Ciclo Celular/fisiología , Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Tamaño de la Célula/genética , Ciclina D3 , Quinasas Ciclina-Dependientes/genética , Ciclinas/genética , ADN de Plantas/metabolismo , Mutación/genética , Tamaño de los Órganos/genética , Fenotipo , Proteínas de Plantas/genética , Estructuras de las Plantas/genética , Estructuras de las Plantas/crecimiento & desarrollo , Estructuras de las Plantas/metabolismo , Plantas Modificadas Genéticamente , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Quinasa Activadora de Quinasas Ciclina-Dependientes
14.
Plant Mol Biol ; 50(1): 111-27, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12139003

RESUMEN

Progression through the cell cycle is driven by cyclin-dependent kinases (CDKs) whose activity is controlled by regulatory subunits called cyclins. The expression of cyclins is subject to numerous controls at multiple levels, not least at the level of transcription. As a first step to unravel the mechanisms that regulate expression of B-cyclins in plants, we undertook the identification of the required promoter elements of the Arath;CycB1;1 gene. A detailed analysis of different promoter fragments consisted in analysing their ability to mediate cell cycle-dependent transcriptional oscillations of the gus reporter gene in transformed BY-2 cell lines. We showed that different promoter regions took part in transcriptional activation. Furthermore, 202 bp upstream of the ATG were sufficient to induce M-phase-specific expression. This region contains an 18 bp sequence including a Myb-binding core (AACGG) which is able to activate reporter gene without leading to M-phase-specific expression. Electrophoretic mobility shift assays showed that this 18 bp sequence specifically binds protein complexes from Arabidopsis cell suspension enriched either in G1 or G2 phase. Furthermore, the Myb core, AACGG, was characterized as necessary for the binding of proteins. DNA affinity purification of the complexes bound to the 18 bp sequence allowed the isolation of three different complexes and two proteins from these complexes were identified by mass spectrometry analyses. A new putative Myb transcription factor and a hypothetical protein, HYP containing with a leucine zipper and Myc-type dimerization domains were identified. When over-expressed in plants, HYP factor is able to trans-activate the expression of gus reporter gene downstream from the -202 promoter fragment as well as the endogenous CycB1;1 gene.


Asunto(s)
Proteínas Portadoras/genética , Ciclo Celular/fisiología , Ciclina B/genética , Proteínas Proto-Oncogénicas c-myb , Secuencias Reguladoras de Ácidos Nucleicos/genética , Arabidopsis/genética , Proteínas de Arabidopsis , Secuencia de Bases , Sitios de Unión/genética , Proteínas Portadoras/metabolismo , Línea Celular , Ciclina B1 , ADN de Plantas/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Regulación de la Expresión Génica , Glucuronidasa/genética , Glucuronidasa/metabolismo , Ácidos Indolacéticos/farmacología , Datos de Secuencia Molecular , Oligonucleótidos/genética , Oligonucleótidos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Unión Proteica , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Elementos de Respuesta/efectos de los fármacos , Elementos de Respuesta/genética , Saccharomyces cerevisiae/genética , Eliminación de Secuencia , Transcripción Genética , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA