Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Int J Mol Sci ; 25(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38791375

RESUMEN

The presence of molecular mutations in colorectal cancer (CRC) is a decisive factor in selecting the most effective first-line therapy. However, molecular analysis is routinely performed only in a limited number of patients with remote metastases. We propose to use tissue stiffness as a marker of the presence of molecular mutations in CRC samples. For this purpose, we applied compression optical coherence elastography (C-OCE) to calculate stiffness values in regions corresponding to specific CRC morphological patterns (n = 54). In parallel to estimating stiffness, molecular analysis from the same zones was performed to establish their relationships. As a result, a high correlation between the presence of KRAS/NRAS/BRAF driver mutations and high stiffness values was revealed regardless of CRC morphological pattern type. Further, we proposed threshold stiffness values for label-free targeted detection of molecular alterations in CRC tissues: for KRAS, NRAS, or BRAF driver mutation-above 803 kPa (sensitivity-91%; specificity-80%; diagnostic accuracy-85%), and only for KRAS driver mutation-above 850 kPa (sensitivity-90%; specificity-88%; diagnostic accuracy-89%). To conclude, C-OCE estimation of tissue stiffness can be used as a clinical diagnostic tool for preliminary screening of genetic burden in CRC tissues.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Colorrectales , Diagnóstico por Imagen de Elasticidad , GTP Fosfohidrolasas , Mutación , Proteínas Proto-Oncogénicas B-raf , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/diagnóstico , Diagnóstico por Imagen de Elasticidad/métodos , Biomarcadores de Tumor/genética , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , GTP Fosfohidrolasas/genética , Femenino , Masculino , Elasticidad , Anciano , Proteínas de la Membrana/genética , Persona de Mediana Edad
2.
Microsc Microanal ; 22(2): 311-25, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26843417

RESUMEN

Cardiovascular disease remains the leading cause of mortality worldwide. Here we suggest a novel approach for tracking atherosclerosis progression based on the use of atomic force microscopy (AFM). Using AFM, we studied cross-sections of coronary arteries with the following types of lesions: Type II-thickened intima; Type III-thickened intima with a lipid streak; Type IV-fibrotic layer over a lipid core; Type Va-unstable fibrotic layer over a lipid core; Type Vc-very thick fibrotic layer. AFM imaging revealed that the fibrotic layer of an atherosclerotic plaque is represented by a basket-weave network of collagen fibers and a subscale network of fibrils that become looser with atherosclerosis progression. In an unstable plaque (Type Va), packing of the collagen fibers and fibrils becomes even less uniform than that at the previous stages, while a stable fibrotic plaque (Vc) has significantly tighter packing. Such alterations of the collagen network morphology apparently, led to deterioration of the Type Va plaque mechanical properties, that, in turn, resulted in its instability and propensity to rupture. Thus, AFM may serve as a useful tool for tracking atherosclerosis progression in the arterial wall tissue.


Asunto(s)
Aterosclerosis/patología , Vasos Coronarios/patología , Microscopía de Fuerza Atómica , Placa Aterosclerótica/patología , Humanos
3.
Opt Lett ; 40(7): 1472-5, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25831362

RESUMEN

We propose a novel OCT-based method for visualizing microvasculature in three-dimension using reference-free processing of individual complex valued B-scans with highly overlapped A-scans. In the lateral direction of such a B-scan, the amplitude and phase of speckles corresponding to vessel regions exhibit faster variability and, thus, can be detected without comparison with other B-scans recorded in the same plane. This method combines elements of several existing OCT angiographic approaches and exhibits: (1) enhanced robustness with respect to bulk tissue motion with frequencies up to tens of Hz, (2) resolution of microcirculation images equal to that of structural images, and (3) possibility of quantifying the vessels in terms of their decorrelation rates.


Asunto(s)
Imagenología Tridimensional/métodos , Microvasos/citología , Tomografía de Coherencia Óptica/métodos , Animales , Ratones
4.
J Biophotonics ; : e202400318, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39301808

RESUMEN

While cryotherapy is one of the traditional ways to reduce postoperative complications in maxillofacial surgery, the cooling degree is not regulated in most cases and the achieved effect is not properly controlled. Therefore, to develop optimal cooling modes, we propose to study the buccal vascular response to cooling, which has not been previously shown. To evaluate the effect of cooling, we analyzed vessel networks using optical coherence tomography angiography (OCT-A). The cheek vessels were OCT-A monitored using cooling by an ice bag/cooling mask. We found the advantages of using a cooling mask over an ice bag consist of a statistically significant decrease in the perfused vessel density (PVD) of the papillary layer at the oral mucosa. The absence of the reticular layer vessel reaction to any type of cooling was noted. We argue for the necessity to develop optimal modes of cryotherapy, which will contribute to blood perfusion reduction and reduction of PVD recovery.

5.
J Biophotonics ; 17(8): e202400086, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38923316

RESUMEN

We report a new application of compression optical coherence elastography (C-OCE) to monitor the emergence of ruptures in individual layers of longitudinally stretched small-intestine walls using tissue samples (n = 36) from nine minipigs. Before stretching, C-OCE successfully estimated stiffness for each intestine-wall layer: longitudinal muscular layer with serosa, circumferential muscular layer, submucosa and mucosa. In stretched samples, C-OCE clearly visualized initial stiffening in both muscular layers. By 25% elongation, a sharp stiffness decrease for the longitudinal muscular layer, indicated emergence of tears in all samples. With further stretching, for most samples, ruptures emerged in the circumferential muscular layer and submucosa, while mucosa remained undamaged. Histology confirmed the OCE-revealed damaging and absence of tissue damage for ~15% elongation. Thus, C-OCE has demonstrated a high potential for determining the safety tissue-stretching threshold which afterward may be used intraoperatively to prevent rupture risk in intestinal tissues stretched during various diagnostic/therapeutic procedures.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Animales , Proyectos Piloto , Porcinos , Tomografía de Coherencia Óptica , Rotura/diagnóstico por imagen , Porcinos Enanos , Intestinos/diagnóstico por imagen , Intestinos/patología , Fenómenos Biomecánicos
6.
Diagnostics (Basel) ; 14(19)2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39410535

RESUMEN

Objectives: The most important phase in the endometrial pathologies diagnostics is the histological examination of tissue biopsies obtained under visual hysteroscopic control. However, the unclear visual diagnostics characteristics of subtle focal endometrial pathologies often lead to selection errors regarding suspicious endometrial lesions and to a subsequent false pathological diagnosis/underestimation of precancer or early-stage cancer. Methods: In this study, we investigate the potential of Multimodal Optical Coherence Tomography (MM OCT) to verify suspicious endometrial lesion regions before biopsy collection. We study the polarization (by cross-polarization OCT, CP OCT) and elastic (by compression OCT-elastography, C-OCE) properties of ex vivo endometrial tissue samples in normal conditions (proliferative and secretory phases to the menstrual cycle, atrophic endometrium) with endometrial hyperplasia (non-atypical and endometrial intraepithelial neoplasia) and endometrial cancer subtypes (low-grade, high-grade, clear cell and serous). Results: To the best of our knowledge, this is the first quantitative assessment of relevant OCT parameters (depth-resolved attenuation coefficient in co-[Att(co) values] and cross-[(Att(cross) values] polarizations and Young's elastic modulus [stiffness values]) for the selection of the most objective criteria to identify the clinically significant endometrial pathologies: endometrial intraepithelial neoplasia and endometrial cancer. The study demonstrates the possibility of detecting endometrial pathologies and establishing optimal threshold values of MM OCT criteria for the identification of endometrial cancer using CP OCT (by Att(co) values = 3.69 mm-1, Sensitivity (Se) = 86.1%, Specificity (Sp) = 92.6%; by Att(cross) values = 2.27 mm-1, Se = 86.8%, Sp = 87.0%) and C-OCE (by stiffness values = 122 kPa, Se = 93.2%, Sp = 91.1%). The study also differentiates endometrial intraepithelial neoplasia from non-atypical endometrial hyperplasia and normal endometrium using C-OCE (by stiffness values = 95 kPa, Se = 87.2%, Sp = 90.1%). Conclusions: The results are indicative of the efficacy and potential of clinical implementation of in vivo hysteroscopic-like MM OCT in the diagnosis of endometrial pathologies.

7.
Lasers Med Sci ; 28(1): 25-31, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22322393

RESUMEN

In this study a minimally invasive microsurgical approach was used for laser patterned microcoagulation (LPM) to initiate gingival and oral mucosal tissue regeneration. We performed a feasibility assessment and histological examination of laser damage and regeneration in the gingiva and oral mucosa using an animal model. The study animals comprised 18 healthy rabbits which were treated in vivo with single pulses from a diode laser at a wavelength of 980 nm and a power of up to 20 W applied to the gingival and oral mucosa at multiple time points. Biopsies were stained with hematoxylin and eosin, nitroblue tetrazolium chloride and picrosirius red, and evaluated by two pathologists blinded to the parameters and date of laser exposure. Histological analysis revealed that the continuity of the epithelial basal cell layer had been reestablished by 1-2 days after LPM, and complete epithelial regeneration had occurred by 7-12 days. A pronounced reactive inflammation developed in the column area 1 day after treatment. High activity of fibroblasts producing new collagen participated in the formation of a network of new thin-wall blood vessel. By the 28th day the tissue structure was almost completely restored with a similar increase of vascularity, and there were no signs of scarring. By the 90th day, tissue structure was completely restored, indicating complete healing. A single LPM treatment induces a wound healing response in the oral mucosa, showing the potential of LPM for the initiation of oral mucosa and gingival regeneration. Complete healing observed in 3 months after treatment with no keratinization change or scar tissue formation.


Asunto(s)
Coagulación con Láser/métodos , Láseres de Semiconductores , Procedimientos Quirúrgicos Mínimamente Invasivos , Mucosa Bucal/efectos de la radiación , Mucosa Bucal/cirugía , Procedimientos Quirúrgicos Orales/métodos , Animales , Biopsia , Colágeno , Fibroblastos , Modelos Animales , Conejos , Regeneración , Coloración y Etiquetado
8.
Front Oncol ; 13: 1133074, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36937429

RESUMEN

Introduction: To improve the quality of brain tumor resections, it is important to differentiate zones with myelinated fibers destruction from tumor tissue and normal white matter. Optical coherence tomography (OCT) is a promising tool for brain tissue visualization and in the present study, we demonstrate the ability of cross-polarization (CP) OCT to detect damaged white matter and differentiate it from normal and tumor tissues. Materials and methods: The study was performed on 215 samples of brain tissue obtained from 57 patients with brain tumors. The analysis of the obtained OCT data included three stages: 1) visual analysis of structural OCT images; 2) quantitative assessment based on attenuation coefficients estimation in co- and cross-polarizations; 3) building of color-coded maps with subsequent visual analysis. The defining characteristics of structural CP OCT images and color-coded maps were determined for each studied tissue type, and then two classification tests were passed by 8 blinded respondents after a training. Results: Visual assessment of structural CP OCT images allows detecting white matter areas with damaged myelinated fibers and differentiate them from normal white matter and tumor tissue. Attenuation coefficients also allow distinguishing all studied brain tissue types, while it was found that damage to myelinated fibers leads to a statistically significant decrease in the values of attenuation coefficients compared to normal white matter. Nevertheless, the use of color-coded optical maps looks more promising as it combines the objectivity of optical coefficient and clarity of the visual assessment, which leads to the increase of the diagnostic accuracy of the method compared to visual analysis of structural OCT images. Conclusions: Alteration of myelinated fibers causes changes in the scattering properties of the white matter, which gets reflected in the nature of the received CP OCT signal. Visual assessment of structural CP OCT images and color-coded maps allows differentiating studied tissue types from each other, while usage of color-coded maps demonstrates higher diagnostic accuracy values in comparison with structural images (F-score = 0.85-0.86 and 0.81, respectively). Thus, the results of the study confirm the potential of using OCT as a neuronavigation tool during resections of brain tumors.

9.
Front Oncol ; 13: 1121838, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37064146

RESUMEN

Identifying the precise topography of cancer for targeted biopsy in colonoscopic examination is a challenge in current diagnostic practice. For the first time we demonstrate the use of compression optical coherence elastography (C-OCE) technology as a new functional OCT modality for differentiating between cancerous and non-cancerous tissues in colon and detecting their morphological features on the basis of measurement of tissue elastic properties. The method uses pre-determined stiffness values (Young's modulus) to distinguish between different morphological structures of normal (mucosa and submucosa), benign tumor (adenoma) and malignant tumor tissue (including cancer cells, gland-like structures, cribriform gland-like structures, stromal fibers, extracellular mucin). After analyzing in excess of fifty tissue samples, a threshold stiffness value of 520 kPa was suggested above which areas of colorectal cancer were detected invariably. A high Pearson correlation (r =0.98; p <0.05), and a negligible bias (0.22) by good agreement of the segmentation results of C-OCE and histological (reference standard) images was demonstrated, indicating the efficiency of C-OCE to identify the precise localization of colorectal cancer and the possibility to perform targeted biopsy. Furthermore, we demonstrated the ability of C-OCE to differentiate morphological subtypes of colorectal cancer - low-grade and high-grade colorectal adenocarcinomas, mucinous adenocarcinoma, and cribriform patterns. The obtained ex vivo results highlight prospects of C-OCE for high-level colon malignancy detection. The future endoscopic use of C-OCE will allow targeted biopsy sampling and simultaneous rapid analysis of the heterogeneous morphology of colon tumors.

10.
Biomed Opt Express ; 14(6): 3037-3056, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37342703

RESUMEN

Currently, optical biopsy technologies are being developed for rapid and label-free visualization of biological tissue with micrometer-level resolution. They can play an important role in breast-conserving surgery guidance, detection of residual cancer cells, and targeted histological analysis. For solving these problems, compression optical coherence elastography (C-OCE) demonstrated impressive results based on differences in the elasticity of different tissue constituents. However, sometimes straightforward C-OCE-based differentiation is insufficient because of the similar stiffness of certain tissue components. We present a new automated approach to the rapid morphological assessment of human breast cancer based on the combined usage of C-OCE and speckle-contrast (SC) analysis. Using the SC analysis of structural OCT images, the threshold value of the SC coefficient was established to enable the separation of areas of adipose cells from necrotic cancer cells, even if they are highly similar in elastic properties. Consequently, the boundaries of the tumor bed can be reliably identified. The joint analysis of structural and elastographic images enables automated morphological segmentation based on the characteristic ranges of stiffness (Young's modulus) and SC coefficient established for four morphological structures of breast-cancer samples from patients post neoadjuvant chemotherapy (residual cancer cells, cancer stroma, necrotic cancer cells, and mammary adipose cells). This enabled precise automated detection of residual cancer-cell zones within the tumor bed for grading cancer response to chemotherapy. The results of C-OCE/SC morphometry highly correlated with the histology-based results (r =0.96-0.98). The combined C-OCE/SC approach has the potential to be used intraoperatively for achieving clean resection margins in breast cancer surgery and for performing targeted histological analysis of samples, including the evaluation of the efficacy of cancer chemotherapy.

11.
Materials (Basel) ; 15(9)2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35591642

RESUMEN

Soft biological tissues, breast cancer tissues in particular, often manifest pronounced nonlinear elasticity, i.e., strong dependence of their Young's modulus on the applied stress. We showed that compression optical coherence elastography (C-OCE) is a promising tool enabling the evaluation of nonlinear properties in addition to the conventionally discussed Young's modulus in order to improve diagnostic accuracy of elastographic examination of tumorous tissues. The aim of this study was to reveal and quantify variations in stiffness for various breast tissue components depending on the applied pressure. We discussed nonlinear elastic properties of different breast cancer samples excised from 50 patients during breast-conserving surgery. Significant differences were found among various subtypes of tumorous and nontumorous breast tissues in terms of the initial Young's modulus (estimated for stress < 1 kPa) and the nonlinearity parameter determining the rate of stiffness increase with increasing stress. However, Young's modulus alone or the nonlinearity parameter alone may be insufficient to differentiate some malignant breast tissue subtypes from benign. For instance, benign fibrous stroma and fibrous stroma with isolated individual cancer cells or small agglomerates of cancer cells do not yet exhibit significant difference in the Young's modulus. Nevertheless, they can be clearly singled out by their nonlinearity parameter, which is the main novelty of the proposed OCE-based discrimination of various breast tissue subtypes. This ability of OCE is very important for finding a clean resection boundary. Overall, morphological segmentation of OCE images accounting for both linear and nonlinear elastic parameters strongly enhances the correspondence with the histological slices and radically improves the diagnostic possibilities of C-OCE for a reliable clinical outcome.

12.
Biomed Opt Express ; 13(4): 2393-2413, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35519266

RESUMEN

A pilot post-mortem study identifies a strong correlation between the attenuation coefficient estimated from the OCT data and some morphological features of the sample, namely the number of nuclei in the field of view of the histological image and the fiber structural parameter introduced in the study to quantify the difference in the myelinated fibers arrangements. The morphological features were identified from the histopathological images of the sample taken from the same locations as the OCT images and stained with the immunohistochemical (IHC) staining specific to the myelin. It was shown that the linear regression of the IHC quantitative characteristics allows adequate prediction of the attenuation coefficient of the sample. This discovery opens the opportunity for the usage of the OCT as a neuronavigation tool.

13.
Biomed Opt Express ; 13(5): 2859-2881, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35774307

RESUMEN

The aims of this study are (i) to compare ultrasound strain elastography (US-SE) and compression optical coherence elastography (C-OCE) in characterization of elastically linear phantoms, (ii) to evaluate factors that can cause discrepancy between the results of the two elastographic techniques in application to real tissues, and (iii) to compare the results of US-SE and C-OCE in the differentiation of benign and malignant breast lesions. On 22 patients, we first used standard US-SE for in vivo assessment of breast cancer before and then after the lesion excision C-OCE was applied for intraoperative visualization of margins of the tumors and assessment of their type/grade using fresh lumpectomy specimens. For verification, the tumor grades and subtypes were determined histologically. We show that in comparison to US-SE, quantitative C-OCE has novel capabilities due to its ability to locally control stress applied to the tissue and obtain local stress-strain curves. For US-SE, we demonstrate examples of malignant tumors that were erroneously classified as benign and vice versa. For C-OCE, all lesions are correctly classified in agreement with the histology. The revealed discrepancies between the strain ratio given by US-SE and ratio of tangent Young's moduli obtained for the same samples by C-OCE are explained. Overall, C-OCE enables significantly improved specificity in breast lesion differentiation and ability to precisely visualize margins of malignant tumors compared. Such results confirm high potential of C-OCE as a high-speed and accurate method for intraoperative assessment of breast tumors and detection of their margins.

14.
J Biophotonics ; 15(9): e202200036, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35652856

RESUMEN

In this article, we offer a novel classification of progressive changes in the connective tissue of dermis in vulvar lichen sclerosus (VLS) relying on quantitative assessment of the second harmonic generation (SHG) signal received from formalin fixed and deparaffinized tissue sections. We formulate criteria for distinguishing four degrees of VLS development: Initial-Mild-Moderate-Severe. Five quantitative characteristics (length and thickness type I Collagen fibers, Mean SHG signal intensity, Skewness and Coherence SHG signal) are used to describe the sequential degradation of connective tissue (changes in the structure, orientation, shape and density of collagen fibers) up to the formation of specific homogeneous masses. Each of the degrees has a characteristic set of quantitatively expressed features. We focus on the identification and description of early, initial changes of the dermis as the least specific. The results obtained by us and the proposed classification of the degrees of the disease can be used to objectify the dynamics of tissue changes during treatment.


Asunto(s)
Liquen Escleroso Vulvar , Colágeno Tipo I , Tejido Conectivo , Femenino , Humanos , Microscopía , Proyectos Piloto , Liquen Escleroso Vulvar/diagnóstico por imagen
15.
J Biophotonics ; 14(9): e202100055, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34057296

RESUMEN

Multimodal optical coherent tomography grows popularity with researchers and clinicians over the past decade. One of the modalities is lymphangiography, which allows visualization of the lymphatic vessel networks within optical coherence tomography (OCT) imaging volume. In the present study, it is shown that lymphatic vessel visualization obtained from the depth-resolved attenuation coefficient distributions, corrected for the noise, shows improved contrast and detail in comparison with previously proposed approaches. We also argue that the two most popular approaches for lymphatic vessel visualization, namely simple intensity thresholding and vesselness calculation based on local Hessian matrix eigenvalues, imply different definitions of the lymphatic vessel's appearance in the OCT volume and lead to the different networks.


Asunto(s)
Vasos Linfáticos , Tomografía de Coherencia Óptica , Angiografía , Linfa , Vasos Linfáticos/diagnóstico por imagen , Linfografía
16.
J Biophotonics ; 14(5): e202000471, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33522719

RESUMEN

In this study multiphoton tomography, based on second harmonic generation (SHG), and two-photon-excited fluorescence (TPEF) was used to visualize both the extracellular matrix and tumor cells in different morphological and molecular subtypes of human breast cancer. It was shown, that quantified assessment of the SHG based imaging data has great potential to reveal differences of collagen quantity, organization and uniformity in both low- and highly- aggressive invasive breast cancers. The values of quantity and uniformity of the collagen fibers distribution were significantly higher in low-aggressive breast cancer compared to the highly-aggressive subtypes, while the value representing collagen organization was lower in the former type. Additionally, it was shown, that TPEF detection of elastin fibers and amyloid protein may be used as a biomarker of detection the low-aggressive breast cancer subtype. Thus, TPEF/SHG imaging offers the possibility of becoming a useful tool for the rapid diagnosis of various subtypes of breast cancer during biopsy as well as for the intraoperative determinination of tumor-positive resection margins.


Asunto(s)
Neoplasias de la Mama , Microscopía de Fluorescencia por Excitación Multifotónica , Neoplasias de la Mama/diagnóstico por imagen , Diferenciación Celular , Colágeno , Femenino , Humanos , Tomografía Computarizada por Rayos X
17.
Sci Rep ; 10(1): 11781, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32678175

RESUMEN

We present a non-invasive (albeit contact) method based on Optical Coherence Elastography (OCE) enabling the in vivo segmentation of morphological tissue constituents, in particular, monitoring of morphological alterations during both tumor development and its response to therapies. The method uses compressional OCE to reconstruct tissue stiffness map as the first step. Then the OCE-image is divided into regions, for which the Young's modulus (stiffness) falls in specific ranges corresponding to the morphological constituents to be discriminated. These stiffness ranges (characteristic "stiffness spectra") are initially determined by careful comparison of the "gold-standard" histological data and the OCE-based stiffness map for the corresponding tissue regions. After such pre-calibration, the results of morphological segmentation of OCE-images demonstrate a striking similarity with the histological results in terms of percentage of the segmented zones. To validate the sensitivity of the OCE-method and demonstrate its high correlation with conventional histological segmentation we present results obtained in vivo on a murine model of breast cancer in comparative experimental study of the efficacy of two antitumor chemotherapeutic drugs with different mechanisms of action. The new technique allowed in vivo monitoring and quantitative segmentation of (1) viable, (2) dystrophic, (3) necrotic tumor cells and (4) edema zones very similar to morphological segmentation of histological images. Numerous applications in other experimental/clinical areas requiring rapid, nearly real-time, quantitative assessment of tissue structure can be foreseen.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Neoplasias/diagnóstico por imagen , Neoplasias/patología , Tomografía de Coherencia Óptica , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Diagnóstico por Imagen de Elasticidad/métodos , Femenino , Humanos , Inmunohistoquímica , Ratones , Neoplasias/tratamiento farmacológico , Tomografía de Coherencia Óptica/métodos , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Biomed Opt Express ; 11(3): 1365-1382, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32206416

RESUMEN

Emerging methods of anti-tumor therapies require new approaches to tumor response evaluation, especially enabling label-free diagnostics and in vivo utilization. Here, to assess the tumor early reaction and predict its long-term response, for the first time we apply in combination the recently developed OCT extensions - optical coherence angiography (OCA) and compressional optical coherence elastography (OCE), thus enabling complementary functional/microstructural tumor characterization. We study two vascular-targeted therapies of different types, (1) anti-angiogenic chemotherapy (ChT) and (2) photodynamic therapy (PDT), aimed to indirectly kill tumor cells through blood supply injury. Despite different mechanisms of anti-angiogenic action for ChT and PDT, in both cases OCA demonstrated high sensitivity to blood perfusion cessation. The new method of OCE-based morphological segmentation revealed very similar histological structure alterations. The OCE results showed high correlation with conventional histology in evaluating percentages of necrotic and viable tumor zones. Such possibilities make OCE an attractive tool enabling previously inaccessible in vivo monitoring of individual tumor response to therapies without taking multiple biopsies.

19.
Diagnostics (Basel) ; 10(12)2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33255263

RESUMEN

The possibility to assess molecular-biological and morphological features of particular breast cancer types can improve the precision of resection margin detection and enable accurate determining of the tumor aggressiveness, which is important for treatment selection. To enable reliable differentiation of breast-cancer subtypes and evaluation of resection margin, without performing conventional histological procedures, here we apply cross-polarization optical coherence tomography (CP-OCT) and compare it with a novel variant of compressional optical coherence elastography (C-OCE) in terms of the diagnostic accuracy (Ac) with histological verification. The study used 70 excised breast cancer specimens with different morphological structure and molecular status (Luminal A, Luminal B, Her2/Neo+, non-luminal and triple-negative cancer). Our first aim was to formulate convenient criteria of visual assessment of CP-OCT and C-OCE images intended (i) to differentiate tumorous and non-tumorous tissues and (ii) to enable more precise differentiation among different malignant states. We identified such criteria based on the presence of heterogeneities and characteristics of signal attenuation in CP-OCT images, as well as the presence of inclusions/mosaic structures combined with visually feasible assessment of several stiffness grades in C-OCE images. Secondly, we performed a blinded reader study of the Ac of C-OCE versus CP-OCT, for delineation of tumorous versus non-tumorous tissues followed by identification of breast cancer subtypes. For tumor detection, C-OCE showed higher specificity than CP-OCT (97.5% versus 93.3%) and higher Ac (96.0 versus 92.4%). For the first time, the Ac of C-OCE and CP-OCT were evaluated for differentiation between non-invasive and invasive breast cancer (90.4% and 82.5%, respectively). Furthermore, for invasive cancers, the difference between invasive but low-aggressive and highly-aggressive subtypes can be detected. For differentiation between non-tumorous tissue and low-aggressive breast-cancer subtypes, Ac was 95.7% for C-OCE and 88.1% for CP-OCT. For differentiation between non-tumorous tissue and highly-aggressive breast cancers, Ac was found to be 98.3% for C-OCE and 97.2% for CP-OCT. In all cases C-OCE showed better diagnostic parameters independently of the tumor type. These findings confirm the high potential of OCT-based examinations for rapid and accurate diagnostics during breast conservation surgery.

20.
Sci Rep ; 9(1): 2024, 2019 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-30765763

RESUMEN

Optical coherence tomography (OCT) is a promising method for detecting cancer margins during tumor resection. This study focused on differentiating tumorous from nontumorous tissues in human brain tissues using cross-polarization OCT (CP OCT). The study was performed on fresh ex vivo human brain tissues from 30 patients with high- and low-grade gliomas. Different tissue types that neurosurgeons should clearly distinguish during surgery, such as the cortex, white matter, necrosis and tumorous tissue, were separately analyzed. Based on volumetric CP OCT data, tumorous and normal brain tissue were differentiated using two optical coefficients - attenuation and forward cross-scattering. Compared with white matter, tumorous tissue without necrotic areas had significantly lower optical attenuation and forward cross-scattering values. The presence of particular morphological patterns, such as necrosis and injured myelinated fibers, can lead to dramatic changes in coefficient values and create some difficulties in differentiating between tissues. Color-coded CP OCT maps based on optical coefficients provided a visual assessment of the tissue. This study demonstrated the high translational potential of CP OCT in differentiating tumorous tissue from white matter. The clinical use of CP OCT during surgery in patients with gliomas could increase the extent of tumor resection and improve overall and progression-free survival.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Encéfalo/diagnóstico por imagen , Tomografía de Coherencia Óptica , Encéfalo/citología , Encéfalo/patología , Femenino , Glioma/diagnóstico por imagen , Glioma/patología , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Curva ROC
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA