Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 613(7943): 355-364, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36599988

RESUMEN

DNA methylation is a fundamental epigenetic mark that governs gene expression and chromatin organization, thus providing a window into cellular identity and developmental processes1. Current datasets typically include only a fraction of methylation sites and are often based either on cell lines that underwent massive changes in culture or on tissues containing unspecified mixtures of cells2-5. Here we describe a human methylome atlas, based on deep whole-genome bisulfite sequencing, allowing fragment-level analysis across thousands of unique markers for 39 cell types sorted from 205 healthy tissue samples. Replicates of the same cell type are more than 99.5% identical, demonstrating the robustness of cell identity programmes to environmental perturbation. Unsupervised clustering of the atlas recapitulates key elements of tissue ontogeny and identifies methylation patterns retained since embryonic development. Loci uniquely unmethylated in an individual cell type often reside in transcriptional enhancers and contain DNA binding sites for tissue-specific transcriptional regulators. Uniquely hypermethylated loci are rare and are enriched for CpG islands, Polycomb targets and CTCF binding sites, suggesting a new role in shaping cell-type-specific chromatin looping. The atlas provides an essential resource for study of gene regulation and disease-associated genetic variants, and a wealth of potential tissue-specific biomarkers for use in liquid biopsies.


Asunto(s)
Células , Metilación de ADN , Epigénesis Genética , Epigenoma , Humanos , Línea Celular , Células/clasificación , Células/metabolismo , Cromatina/genética , Cromatina/metabolismo , Islas de CpG/genética , ADN/genética , ADN/metabolismo , Desarrollo Embrionario , Elementos de Facilitación Genéticos , Especificidad de Órganos , Proteínas del Grupo Polycomb/metabolismo , Secuenciación Completa del Genoma
2.
Gut ; 73(4): 639-648, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38123998

RESUMEN

OBJECTIVE: Pancreatic ductal adenocarcinoma (PDAC) is commonly diagnosed at an advanced stage. Liquid biopsy approaches may facilitate detection of early stage PDAC when curative treatments can be employed. DESIGN: To assess circulating marker discrimination in training, testing and validation patient cohorts (total n=426 patients), plasma markers were measured among PDAC cases and patients with chronic pancreatitis, colorectal cancer (CRC), and healthy controls. Using CA19-9 as an anchor marker, measurements were made of two protein markers (TIMP1, LRG1) and cell-free DNA (cfDNA) pancreas-specific methylation at 9 loci encompassing 61 CpG sites. RESULTS: Comparative methylome analysis identified nine loci that were differentially methylated in exocrine pancreas DNA. In the training set (n=124 patients), cfDNA methylation markers distinguished PDAC from healthy and CRC controls. In the testing set of 86 early stage PDAC and 86 matched healthy controls, CA19-9 had an area under the receiver operating characteristic curve (AUC) of 0.88 (95% CI 0.83 to 0.94), which was increased by adding TIMP1 (AUC 0.92; 95% CI 0.88 to 0.96; p=0.06), LRG1 (AUC 0.92; 95% CI 0.88 to 0.96; p=0.02) or exocrine pancreas-specific cfDNA methylation markers at nine loci (AUC 0.92; 95% CI 0.88 to 0.96; p=0.02). In the validation set of 40 early stage PDAC and 40 matched healthy controls, a combined panel including CA19-9, TIMP1 and a 9-loci cfDNA methylation panel had greater discrimination (AUC 0.86, 95% CI 0.77 to 0.95) than CA19-9 alone (AUC 0.82; 95% CI 0.72 to 0.92). CONCLUSION: A combined panel of circulating markers including proteins and methylated cfDNA increased discrimination compared with CA19-9 alone for early stage PDAC.


Asunto(s)
Adenocarcinoma , Carcinoma Ductal Pancreático , Ácidos Nucleicos Libres de Células , Neoplasias Pancreáticas , Humanos , Antígeno CA-19-9 , Biomarcadores de Tumor , Ácidos Nucleicos Libres de Células/metabolismo , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Páncreas/patología , Adenocarcinoma/diagnóstico , Adenocarcinoma/genética , Adenocarcinoma/patología , Metilación de ADN
3.
Diabetologia ; 66(10): 1925-1942, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37480416

RESUMEN

AIM/HYPOTHESIS: Hyperglycaemia is associated with alpha cell dysfunction, leading to dysregulated glucagon secretion in type 1 and type 2 diabetes; however, the mechanisms involved are still elusive. The nutrient sensor mammalian target of rapamycin complex 1 (mTORC1) plays a major role in the maintenance of alpha cell mass and function. We studied the regulation of alpha cell mTORC1 by nutrients and its role in the development of hyperglucagonaemia in diabetes. METHODS: Alpha cell mTORC1 activity was assessed by immunostaining for phosphorylation of its downstream target, the ribosomal protein S6, and glucagon, followed by confocal microscopy on pancreatic sections and flow cytometry on dispersed human and mouse islets and the alpha cell line, αTC1-6. Metabolomics and metabolic flux were studied by 13C glucose labelling in 2.8 or 16.7 mmol/l glucose followed by LC-MS analysis. To study the role of mTORC1 in mediating hyperglucagonaemia in diabetes, we generated an inducible alpha cell-specific Rptor knockout in the Akita mouse model of diabetes and tested the effects on glucose tolerance by IPGTT and on glucagon secretion. RESULTS: mTORC1 activity was increased in alpha cells from diabetic Akita mice in parallel to the development of hyperglycaemia and hyperglucagonaemia (two- to eightfold increase). Acute exposure of mouse and human islets to amino acids stimulated alpha cell mTORC1 (3.5-fold increase), whereas high glucose concentrations inhibited mTORC1 (1.4-fold decrease). The mTORC1 response to glucose was abolished in human and mouse diabetic alpha cells following prolonged islet exposure to high glucose levels, resulting in sustained activation of mTORC1, along with increased glucagon secretion. Metabolomics and metabolic flux analysis showed that exposure to high glucose levels enhanced glycolysis, glucose oxidation and the synthesis of glucose-derived amino acids. In addition, chronic exposure to high glucose levels increased the expression of Slc7a2 and Slc38a4, which encode amino acid transporters, as well as the levels of branched-chain amino acids and methionine cycle metabolites (~1.3-fold increase for both). Finally, conditional Rptor knockout in alpha cells from adult diabetic mice inhibited mTORC1, thereby inhibiting glucagon secretion (~sixfold decrease) and improving diabetes, despite persistent insulin deficiency. CONCLUSIONS/INTERPRETATION: Alpha cell exposure to hyperglycaemia enhances amino acid synthesis and transport, resulting in sustained activation of mTORC1, thereby increasing glucagon secretion. mTORC1 therefore plays a major role in mediating alpha cell dysfunction in diabetes. DATA AVAILABILITY: All sequencing data are available from the Gene Expression Omnibus (GEO) repository (accession no. GSE154126; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE154126 ).


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Hiperglucemia , Adulto , Humanos , Animales , Glucagón , Diana Mecanicista del Complejo 1 de la Rapamicina , Glucosa , Mamíferos
4.
Diabetes Obes Metab ; 25(12): 3529-3537, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37646197

RESUMEN

BACKGROUND: Donor hyperglycaemia following brain death has been attributed to reversible insulin resistance. However, our islet and pancreas transplant data suggest that other mechanisms may be predominant. We aimed to determine the relationships between donor insulin use and markers of beta-cell death and beta-cell function in pancreas donors after brain death. METHODS: In pancreas donors after brain death, we compared clinical and biochemical data in 'insulin-treated' and 'not insulin-treated donors' (IT vs. not-IT). We measured plasma glucose, C-peptide and levels of circulating unmethylated insulin gene promoter cell-free DNA (INS-cfDNA) and microRNA-375 (miR-375), as measures of beta-cell death. Relationships between markers of beta-cell death and islet isolation outcomes and post-transplant function were also evaluated. RESULTS: Of 92 pancreas donors, 40 (43%) required insulin. Glycaemic control and beta-cell function were significantly poorer in IT donors versus not-IT donors [median (IQR) peak glucose: 8 (7-11) vs. 6 (6-8) mmol/L, p = .016; C-peptide: 3280 (3159-3386) vs. 3195 (2868-3386) pmol/L, p = .046]. IT donors had significantly higher levels of INS-cfDNA [35 (18-52) vs. 30 (8-51) copies/ml, p = .035] and miR-375 [1.050 (0.19-1.95) vs. 0.73 (0.32-1.10) copies/nl, p = .05]. Circulating donor miR-375 was highly predictive of recipient islet graft failure at 3 months [adjusted receiver operator curve (SE) = 0.813 (0.149)]. CONCLUSIONS: In pancreas donors, hyperglycaemia requiring IT is strongly associated with beta-cell death. This provides an explanation for the relationship of donor IT with post-transplant beta-cell dysfunction in transplant recipients.


Asunto(s)
Ácidos Nucleicos Libres de Células , Hiperglucemia , Trasplante de Islotes Pancreáticos , MicroARNs , Humanos , Péptido C , Muerte Encefálica , Insulina/genética , Donantes de Tejidos , Muerte Celular
5.
Eur Respir J ; 60(5)2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35450968

RESUMEN

BACKGROUND: Circulating biomarkers for lung damage are lacking. Lung epithelium-specific DNA methylation patterns can potentially report the presence of lung-derived cell-free DNA (cfDNA) in blood, as an indication of lung cell death. METHODS: We sorted human lung alveolar and bronchial epithelial cells from surgical specimens, and obtained their methylomes using whole-genome bisulfite sequencing. We developed a PCR sequencing assay determining the methylation status of 17 loci with lung-specific methylation patterns, and used it to assess lung-derived cfDNA in the plasma of healthy volunteers and patients with lung disease. RESULTS: Loci that are uniquely unmethylated in alveolar or bronchial epithelial cells are enriched for enhancers controlling lung-specific genes. Methylation markers extracted from these methylomes revealed that normal lung cell turnover probably releases cfDNA into the air spaces, rather than to blood. People with advanced lung cancer show a massive elevation of lung cfDNA concentration in blood. Among individuals undergoing bronchoscopy, lung-derived cfDNA is observed in the plasma of those later diagnosed with lung cancer, and to a lesser extent in those diagnosed with other lung diseases. Lung cfDNA is also elevated in patients with acute exacerbation of COPD compared with patients with stable disease, and is associated with future exacerbation and mortality in these patients. CONCLUSIONS: Universal cfDNA methylation markers of normal lung epithelium allow for mutation-independent, sensitive and specific detection of lung-derived cfDNA, reporting on ongoing lung injury. Such markers can find broad utility in the study of normal and pathologic human lung dynamics.


Asunto(s)
Ácidos Nucleicos Libres de Células , Neoplasias Pulmonares , Humanos , Metilación de ADN , Ácidos Nucleicos Libres de Células/genética , Biopsia Líquida , Biomarcadores , Epitelio , Pulmón , Neoplasias Pulmonares/genética , Biomarcadores de Tumor/genética
7.
Diabetologia ; 64(5): 1133-1143, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33558985

RESUMEN

AIMS/HYPOTHESIS: Acute hyperglycaemia stimulates pancreatic beta cell proliferation in the mouse whereas chronic hyperglycaemia appears to be toxic. We hypothesise that this toxic effect is mediated by increased beta cell workload, unrelated to hyperglycaemia per se. METHODS: To test this hypothesis, we developed a novel mouse model of cell-autonomous increased beta cell glycolytic flux caused by a conditional heterozygous beta cell-specific mutation that activates glucokinase (GCK), mimicking key aspects of the rare human genetic disease GCK-congenital hyperinsulinism. RESULTS: In the mutant mice, we observed random and fasting hypoglycaemia (random 4.5-5.4 mmol/l and fasting 3.6 mmol/l) that persisted for 15 months. GCK activation led to increased beta cell proliferation as measured by Ki67 expression (2.7% vs 1.5%, mutant and wild-type (WT), respectively, p < 0.01) that resulted in a 62% increase in beta cell mass in young mice. However, by 8 months of age, mutant mice developed impaired glucose tolerance, which was associated with decreased absolute beta cell mass from 2.9 mg at 1.5 months to 1.8 mg at 8 months of age, with preservation of individual beta cell function. Impaired glucose tolerance was further exacerbated by a high-fat/high-sucrose diet (AUC 1796 vs 966 mmol/l × min, mutant and WT, respectively, p < 0.05). Activation of GCK was associated with an increased DNA damage response and an elevated expression of Chop, suggesting metabolic stress as a contributor to beta cell death. CONCLUSIONS/INTERPRETATION: We propose that increased workload-driven biphasic beta cell dynamics contribute to decreased beta cell function observed in long-standing congenital hyperinsulinism and type 2 diabetes.


Asunto(s)
Hiperinsulinismo Congénito/patología , Glucoquinasa/genética , Células Secretoras de Insulina/patología , Animales , Recuento de Células , Hiperinsulinismo Congénito/genética , Hiperinsulinismo Congénito/metabolismo , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/patología , Modelos Animales de Enfermedad , Femenino , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/patología , Masculino , Ratones , Ratones Transgénicos , Mutación , Tamaño de los Órganos
8.
PLoS Genet ; 14(5): e1007329, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29795570

RESUMEN

As part of a broader collaborative network of exome sequencing studies, we developed a jointly called data set of 5,685 Ashkenazi Jewish exomes. We make publicly available a resource of site and allele frequencies, which should serve as a reference for medical genetics in the Ashkenazim (hosted in part at https://ibd.broadinstitute.org, also available in gnomAD at http://gnomad.broadinstitute.org). We estimate that 34% of protein-coding alleles present in the Ashkenazi Jewish population at frequencies greater than 0.2% are significantly more frequent (mean 15-fold) than their maximum frequency observed in other reference populations. Arising via a well-described founder effect approximately 30 generations ago, this catalog of enriched alleles can contribute to differences in genetic risk and overall prevalence of diseases between populations. As validation we document 148 AJ enriched protein-altering alleles that overlap with "pathogenic" ClinVar alleles (table available at https://github.com/macarthur-lab/clinvar/blob/master/output/clinvar.tsv), including those that account for 10-100 fold differences in prevalence between AJ and non-AJ populations of some rare diseases, especially recessive conditions, including Gaucher disease (GBA, p.Asn409Ser, 8-fold enrichment); Canavan disease (ASPA, p.Glu285Ala, 12-fold enrichment); and Tay-Sachs disease (HEXA, c.1421+1G>C, 27-fold enrichment; p.Tyr427IlefsTer5, 12-fold enrichment). We next sought to use this catalog, of well-established relevance to Mendelian disease, to explore Crohn's disease, a common disease with an estimated two to four-fold excess prevalence in AJ. We specifically attempt to evaluate whether strong acting rare alleles, particularly protein-truncating or otherwise large effect-size alleles, enriched by the same founder-effect, contribute excess genetic risk to Crohn's disease in AJ, and find that ten rare genetic risk factors in NOD2 and LRRK2 are enriched in AJ (p < 0.005), including several novel contributing alleles, show evidence of association to CD. Independently, we find that genomewide common variant risk defined by GWAS shows a strong difference between AJ and non-AJ European control population samples (0.97 s.d. higher, p<10-16). Taken together, the results suggest coordinated selection in AJ population for higher CD risk alleles in general. The results and approach illustrate the value of exome sequencing data in case-control studies along with reference data sets like ExAC (sites VCF available via FTP at ftp.broadinstitute.org/pub/ExAC_release/release0.3/) to pinpoint genetic variation that contributes to variable disease predisposition across populations.


Asunto(s)
Enfermedad de Crohn/genética , Predisposición Genética a la Enfermedad/genética , Judíos/genética , Enfermedades Raras/genética , Algoritmos , Enfermedad de Crohn/epidemiología , Genética de Población , Estudio de Asociación del Genoma Completo , Haplotipos , Humanos , Modelos Genéticos , Epidemiología Molecular , Polimorfismo de Nucleótido Simple , Enfermedades Raras/epidemiología
9.
Proc Natl Acad Sci U S A ; 113(13): E1826-34, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-26976580

RESUMEN

Minimally invasive detection of cell death could prove an invaluable resource in many physiologic and pathologic situations. Cell-free circulating DNA (cfDNA) released from dying cells is emerging as a diagnostic tool for monitoring cancer dynamics and graft failure. However, existing methods rely on differences in DNA sequences in source tissues, so that cell death cannot be identified in tissues with a normal genome. We developed a method of detecting tissue-specific cell death in humans based on tissue-specific methylation patterns in cfDNA. We interrogated tissue-specific methylome databases to identify cell type-specific DNA methylation signatures and developed a method to detect these signatures in mixed DNA samples. We isolated cfDNA from plasma or serum of donors, treated the cfDNA with bisulfite, PCR-amplified the cfDNA, and sequenced it to quantify cfDNA carrying the methylation markers of the cell type of interest. Pancreatic ß-cell DNA was identified in the circulation of patients with recently diagnosed type-1 diabetes and islet-graft recipients; oligodendrocyte DNA was identified in patients with relapsing multiple sclerosis; neuronal/glial DNA was identified in patients after traumatic brain injury or cardiac arrest; and exocrine pancreas DNA was identified in patients with pancreatic cancer or pancreatitis. This proof-of-concept study demonstrates that the tissue origins of cfDNA and thus the rate of death of specific cell types can be determined in humans. The approach can be adapted to identify cfDNA derived from any cell type in the body, offering a minimally invasive window for diagnosing and monitoring a broad spectrum of human pathologies as well as providing a better understanding of normal tissue dynamics.


Asunto(s)
Metilación de ADN , ADN/sangre , Células Secretoras de Insulina/patología , Oligodendroglía/patología , Adolescente , Adulto , Anciano , Isquemia Encefálica/genética , Isquemia Encefálica/patología , Estudios de Casos y Controles , Muerte Celular , Niño , Preescolar , ADN/metabolismo , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patología , Femenino , Marcadores Genéticos , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple Recurrente-Remitente/genética , Esclerosis Múltiple Recurrente-Remitente/patología , Especificidad de Órganos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Pancreatitis Crónica/genética , Pancreatitis Crónica/patología , Regiones Promotoras Genéticas , Sensibilidad y Especificidad , Adulto Joven
10.
PLoS Med ; 15(9): e1002654, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30240442

RESUMEN

BACKGROUND: Type 2 diabetes (T2D) is a heterogeneous disease for which (1) disease-causing pathways are incompletely understood and (2) subclassification may improve patient management. Unlike other biomarkers, germline genetic markers do not change with disease progression or treatment. In this paper, we test whether a germline genetic approach informed by physiology can be used to deconstruct T2D heterogeneity. First, we aimed to categorize genetic loci into groups representing likely disease mechanistic pathways. Second, we asked whether the novel clusters of genetic loci we identified have any broad clinical consequence, as assessed in four separate subsets of individuals with T2D. METHODS AND FINDINGS: In an effort to identify mechanistic pathways driven by established T2D genetic loci, we applied Bayesian nonnegative matrix factorization (bNMF) clustering to genome-wide association study (GWAS) results for 94 independent T2D genetic variants and 47 diabetes-related traits. We identified five robust clusters of T2D loci and traits, each with distinct tissue-specific enhancer enrichment based on analysis of epigenomic data from 28 cell types. Two clusters contained variant-trait associations indicative of reduced beta cell function, differing from each other by high versus low proinsulin levels. The three other clusters displayed features of insulin resistance: obesity mediated (high body mass index [BMI] and waist circumference [WC]), "lipodystrophy-like" fat distribution (low BMI, adiponectin, and high-density lipoprotein [HDL] cholesterol, and high triglycerides), and disrupted liver lipid metabolism (low triglycerides). Increased cluster genetic risk scores were associated with distinct clinical outcomes, including increased blood pressure, coronary artery disease (CAD), and stroke. We evaluated the potential for clinical impact of these clusters in four studies containing individuals with T2D (Metabolic Syndrome in Men Study [METSIM], N = 487; Ashkenazi, N = 509; Partners Biobank, N = 2,065; UK Biobank [UKBB], N = 14,813). Individuals with T2D in the top genetic risk score decile for each cluster reproducibly exhibited the predicted cluster-associated phenotypes, with approximately 30% of all individuals assigned to just one cluster top decile. Limitations of this study include that the genetic variants used in the cluster analysis were restricted to those associated with T2D in populations of European ancestry. CONCLUSION: Our approach identifies salient T2D genetically anchored and physiologically informed pathways, and supports the use of genetics to deconstruct T2D heterogeneity. Classification of patients by these genetic pathways may offer a step toward genetically informed T2D patient management.


Asunto(s)
Diabetes Mellitus Tipo 2/clasificación , Diabetes Mellitus Tipo 2/genética , Sitios Genéticos , Familia de Multigenes , Algoritmos , Teorema de Bayes , Análisis por Conglomerados , Estudios de Cohortes , Estudios Transversales , Bases de Datos Genéticas , Femenino , Efecto Fundador , Marcadores Genéticos , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Insulina/deficiencia , Insulina/genética , Resistencia a la Insulina/genética , Masculino , Fenotipo , Estudios Prospectivos , Factores de Riesgo
11.
Pediatr Diabetes ; 19(3): 388-392, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29193502

RESUMEN

Diabetes occurs in 1/90 000 to 1/160 000 births and when diagnosed under 6 months of age is very likely to have a primary genetic cause. FOXP3 encodes a transcription factor critical for T regulatory cell function and mutations are known to cause "immune dysregulation, polyendocrinopathy (including insulin-requiring diabetes), enteropathy, X-linked" (IPEX) syndrome. This condition is often fatal unless patients receive a bone-marrow transplant. Here we describe the phenotype of male neonates and infants who had insulin-requiring diabetes without other features of IPEX syndrome and were found to have mutations in FOXP3. Whole-exome or next generation sequencing of genes of interest was carried out in subjects with isolated neonatal diabetes without a known genetic cause. RT-PCR was carried out to investigate the effects on RNA splicing of a novel intronic splice-site variant. Four male subjects were found to have FOXP3 variants in the hemizygous state: p.Arg114Trp, p.Arg347His, p.Lys393Met, and c.1044+5G>A which was detected in 2 unrelated probands and in a brother diagnosed with diabetes at 2.1 years of age. Of these, p.Arg114Trp is likely a benign rare variant found in individuals of Ashkenazi Jewish ancestry and p.Arg347His has been previously described in patients with classic IPEX syndrome. The p.Lys393Met and c.1044+5G>A variants are novel to this study. RT-PCR studies of the c.1044+5G>A splice variant confirmed it affected RNA splicing by generating both a wild type and truncated transcript. We conclude that FOXP3 mutations can cause early-onset insulin-requiring diabetes with or without other features of IPEX syndrome.


Asunto(s)
Diabetes Mellitus Tipo 1/congénito , Diabetes Mellitus/genética , Diarrea/diagnóstico , Factores de Transcripción Forkhead/genética , Enfermedades Genéticas Ligadas al Cromosoma X/diagnóstico , Enfermedades del Sistema Inmune/congénito , Sistema de Registros , Diabetes Mellitus Tipo 1/diagnóstico , Humanos , Enfermedades del Sistema Inmune/diagnóstico , Lactante , Recién Nacido , Masculino
12.
Pituitary ; 21(4): 406-413, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29728863

RESUMEN

OBJECTIVE: Hyperprolactinemia is common in acromegaly and in these patients, insulin-like growth factor (IGF)-1 level may decrease with dopamine agonist. We report a series of patients with prolactinoma and a paradoxical increase of IGF-1 levels during cabergoline treatment. METHODS: Clinical characteristics and response to treatment of patients with prolactinomas, in whom normal or slightly elevated baseline IGF-1 levels increased with cabergoline. RESULTS: The cohort consisted of ten prolactinoma patients (nine males, mean age 48 ± 14 years). Mean adenoma size was 23.8 ± 16.2 mm, with cavernous sinus invasion in eight. In five patients baseline IGF-1 levels were normal and in four levels were 1.2-1.5-fold the upper limit of the normal (ULN). One patient had IGF-1 measured shortly after initiating cabergoline and it was 1.4 × ULN. During cabergoline treatment (dose range 0.5-2 mg/week) PRL normalization was achieved in all and tumor shrinkage occurred in seven patients. The mean IGF-1 increase on cabergoline was 1.7 ± 0.4 × ULN. Cabergoline dose reduction or interruption was attempted in five patients and resulted in decreased IGF-1 levels in all, including normalization in two patients. Three patients were eventually diagnosed with acromegaly, one was referred for pituitary surgery followed by complete remission, another patient was switched to somatostatin analogue, and the third was treated by combination of somatostatin analogues with pegvisomant, with reduction of IGF-1 in all these patients. CONCLUSION: IGF-1 levels may increase to clinically significant levels during cabergoline treatment for PRL-adenoma. We suggest IGF-1 monitoring in all patients treated with dopamine agonists and not only in those presenting symptoms of acromegaly.


Asunto(s)
Agonistas de Dopamina/uso terapéutico , Factor I del Crecimiento Similar a la Insulina/metabolismo , Prolactinoma/tratamiento farmacológico , Prolactinoma/metabolismo , Acromegalia/tratamiento farmacológico , Acromegalia/metabolismo , Adenoma/tratamiento farmacológico , Adenoma/metabolismo , Adulto , Anciano , Cabergolina , Ergolinas/uso terapéutico , Femenino , Humanos , Masculino , Persona de Mediana Edad
13.
Isr Med Assoc J ; 20(11): 679-686, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30430796

RESUMEN

BACKGROUND: Reduced sensitivity to thyroid hormone (RSTH) syndrome describes a group of rare heterogeneous genetic disorders. Precise diagnosis is essential to avoid unnecessary treatment. OBJECTIVES: To identify and characterize previously undiagnosed patients with RSTH in Israel. METHODS: Patients with suspected RSTH throughout Israel were referred for study. After clinical evaluation, genomic DNA was obtained and all coding exons of the thyroid hormone receptor beta (THRB) gene were sequenced. If mutations were found, all available blood relatives were evaluated. The common polymorphism rs2596623, a putative intronic regulatory variant, was also genotyped. Genotype/phenotype correlations were sought, and the effect of mutation status on pregnancy outcome was determined. RESULTS: Eight mutations (one novel; two de-novo, six dominant) were identified in eight probands and 13 family members. Clinical and genetic features were similar to those reported in other populations. Previous suggestions that rs2596623 predicts clinical features were not confirmed. There was no evidence of increased risk of miscarriage or fetal viability. Mothers carrying a THRB mutation tended to have increased gestational hypertension and low weight gain during pregnancy. Their affected offspring had increased risk of small-for-gestational age and poor postnatal weight gain. CONCLUSIONS: Clinical heterogeneity due to THRB mutations cannot be explained by the variant rs2596623. Mothers and newborns with THRB mutations seem to be at increased risk of certain complications, such as gestational hypertension and poor intrauterine and postnatal growth. However, these issues are usually mild, suggesting that routine intervention to regulate thyroid hormone levels may not be warranted in these patients.


Asunto(s)
Complicaciones del Embarazo/epidemiología , Resultado del Embarazo , Receptores beta de Hormona Tiroidea/genética , Síndrome de Resistencia a Hormonas Tiroideas/diagnóstico , Hormonas Tiroideas/sangre , Adolescente , Adulto , Niño , Preescolar , Femenino , Estudios de Asociación Genética , Genotipo , Humanos , Hipertensión Inducida en el Embarazo/epidemiología , Hipertensión Inducida en el Embarazo/genética , Lactante , Recién Nacido , Israel , Masculino , Persona de Mediana Edad , Mutación , Polimorfismo Genético , Embarazo , Complicaciones del Embarazo/genética , Análisis de Secuencia de ADN , Síndrome de Resistencia a Hormonas Tiroideas/genética , Adulto Joven
14.
Diabetologia ; 60(8): 1363-1369, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28597073

RESUMEN

Beta cells are primarily defined by their ability to produce insulin and secrete it in response to appropriate stimuli. It has been known for some time, however, that beta cells are not functionally identical to each other and that the rates of insulin synthesis and release differ from cell to cell, although the functional significance of this variability remains unclear. Recent studies have used heterogeneous gene expression to isolate and evaluate different subpopulations of beta cells and to demonstrate alterations in these subpopulations in diabetes. In the last few years, novel technologies have emerged that permit the detailed evaluation of the proteome (e.g. time-of-flight mass spectroscopy, [CyTOF]) and transcriptome (e.g. massively parallel RNA sequencing) at the single-cell level, and tools for single beta cell metabolomics and epigenomics are quickly maturing. The first wave of single beta cell proteome and transcriptome studies were published in 2016, giving a glimpse into the power, but also the limitations, of these approaches. Despite this progress, it remains unclear if the observed heterogeneity of beta cells represents stable, distinct beta cell types or, alternatively, highly dynamic beta cell states. Here we provide a concise overview of recent developments in the emerging field of beta cell heterogeneity and the implications for our understanding of beta cell biology and pathology.


Asunto(s)
Diabetes Mellitus/metabolismo , Diabetes Mellitus/patología , Células Secretoras de Insulina/metabolismo , Animales , Epigenómica , Perfilación de la Expresión Génica , Humanos , Células Secretoras de Insulina/patología , Proteómica
15.
Mol Syst Biol ; 12(11): 886, 2016 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-27875241

RESUMEN

Biological systems can maintain constant steady-state output despite variation in biochemical parameters, a property known as exact adaptation. Exact adaptation is achieved using integral feedback, an engineering strategy that ensures that the output of a system robustly tracks its desired value. However, it is unclear how physiological circuits also keep their output dynamics precise-including the amplitude and response time to a changing input. Such robustness is crucial for endocrine and neuronal homeostatic circuits because they need to provide a precise dynamic response in the face of wide variation in the physiological parameters of their target tissues; how such circuits compensate their dynamics for unavoidable natural fluctuations in parameters is unknown. Here, we present a design principle that provides the desired robustness, which we call dynamical compensation (DC). We present a class of circuits that show DC by means of a nonlinear feedback loop in which the regulated variable controls the functional mass of the controlling endocrine or neuronal tissue. This mechanism applies to the control of blood glucose by insulin and explains several experimental observations on insulin resistance. We provide evidence that this mechanism may also explain compensation and organ size control in other physiological circuits.


Asunto(s)
Retroalimentación Fisiológica , Biología de Sistemas/métodos , Adaptación Fisiológica , Modelos Biológicos
16.
Diabetes Obes Metab ; 19 Suppl 1: 147-152, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28880481

RESUMEN

While the ß-cells of the endocrine pancreas are defined as cells with high levels of insulin production and tight stimulus-secretion coupling, the existence of functional heterogeneity among them has been known for decades. Recent advances in molecular technologies, in particular single-cell profiling on both the protein and messenger RNA level, have uncovered that ß-cells exist in several antigenically and molecularly definable states. Using antibodies to cell surface markers or multidimensional clustering of ß-cells using more than 20 protein markers by mass cytometry, 4 distinct groups of ß-cells could be differentiated. However, whether these states represent permanent cell lineages or are readily interconvertible from one group to another remains to be determined. Nevertheless, future analysis of the pathogenesis of type 1 and type 2 diabetes will certainly benefit from a growing appreciation of ß-cell heterogeneity. Here, we aim to summarize concisely the recent advances in the field and their possible impact on our understanding of ß-cell physiology and pathophysiology.


Asunto(s)
Regulación de la Expresión Génica , Células Secretoras de Insulina/fisiología , Transcriptoma , Animales , Biomarcadores/metabolismo , Investigación Biomédica/métodos , Investigación Biomédica/tendencias , Linaje de la Célula , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Tipo 1/fisiopatología , Diabetes Mellitus Tipo 2/patología , Diabetes Mellitus Tipo 2/fisiopatología , Perfilación de la Expresión Génica/tendencias , Humanos , Insulina/genética , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Análisis de la Célula Individual/tendencias , Especificidad de la Especie
17.
J Biol Chem ; 290(34): 20934-20946, 2015 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-26139601

RESUMEN

The tumor suppressor liver kinase B1 (LKB1) is an important regulator of pancreatic ß cell biology. LKB1-dependent phosphorylation of distinct AMPK (adenosine monophosphate-activated protein kinase) family members determines proper ß cell polarity and restricts ß cell size, total ß cell mass, and glucose-stimulated insulin secretion (GSIS). However, the full spectrum of LKB1 effects and the mechanisms involved in the secretory phenotype remain incompletely understood. We report here that in the absence of LKB1 in ß cells, GSIS is dramatically and persistently improved. The enhancement is seen both in vivo and in vitro and cannot be explained by altered cell polarity, increased ß cell number, or increased insulin content. Increased secretion does require membrane depolarization and calcium influx but appears to rely mostly on a distal step in the secretion pathway. Surprisingly, enhanced GSIS is seen despite profound defects in mitochondrial structure and function in LKB1-deficient ß cells, expected to greatly diminish insulin secretion via the classic triggering pathway. Thus LKB1 is essential for mitochondrial homeostasis in ß cells and in parallel is a powerful negative regulator of insulin secretion. This study shows that ß cells can be manipulated to enhance GSIS to supra-normal levels even in the face of defective mitochondria and without deterioration over months.


Asunto(s)
Glucosa/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Mitocondrias/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Regulación de la Expresión Génica , Glucosa/farmacología , Ácido Glutámico/metabolismo , Humanos , Insulina/agonistas , Secreción de Insulina , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/patología , Ratones , Ratones Transgénicos , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Fosforilación , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal , Tamoxifeno/toxicidad , Técnicas de Cultivo de Tejidos
18.
Neuroendocrinology ; 103(6): 724-37, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26619207

RESUMEN

BACKGROUND: Everolimus (RAD001), an mTORC1 inhibitor, demonstrated promising, but limited, anticancer effects in neuroendocrine tumors (NETs). Torin1 (a global mTOR inhibitor) and NVP-BEZ235 (a PI3K/mTOR inhibitor) seem to be more effective than RAD001. Autophagy, a degradation pathway that may promote tumor growth, is regulated by mTOR; mTOR inhibition results in stimulation of autophagy. Chloroquine (CQ) inhibits autophagy. AIM: To explore the effect of CQ alone or in combination with RAD001, Torin1 or NVP-BEZ235 on autophagy and on NET cell viability, proliferation and apoptosis. METHODS: The NET cell line BON1 was treated with CQ with or without different mTOR inhibitors. siRNA against ATG5/7 was used to genetically inhibit autophagy. Cellular viability was examined by XTT, proliferation by Ki-67 staining and cell cycles by flow cytometry. Apoptosis was analyzed by Western blotting for cleaved caspase 3 and staining for annexin V; autophagy was evaluated by Western blotting and immunostaining for LC3. RESULTS: RAD001, Torin1, NVP-BEZ235 and CQ all decreased BON1 cell viability. The effect of RAD001 was smaller than that of the other mTOR inhibitors or CQ. Torin1 and NVP-BEZ235 markedly inhibited cell proliferation, without inducing apoptosis. CQ similarly decreased cell proliferation, while robustly increasing apoptosis. Treatment with Torin1 or NVP-BEZ235 together with CQ was additive on viability, without increasing CQ-induced apoptosis. Inhibition of autophagy by ATG5/7 knockdown increased apoptosis in the presence or absence of mTOR inhibitors, mimicking the CQ effects. CONCLUSION: CQ inhibits NET growth by inducing apoptosis and by inhibiting cell proliferation, probably via inhibition of autophagy. CQ may potentiate the antitumor effect of mTOR inhibitors.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Cloroquina/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular , Everolimus/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Imidazoles/farmacología , Antígeno Ki-67/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Tumores Neuroendocrinos/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Quinolinas/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Factores de Tiempo
19.
Nat Genet ; 39(8): 951-3, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17603484

RESUMEN

We studied genes involved in pancreatic beta cell function and survival, identifying associations between SNPs in WFS1 and diabetes risk in UK populations that we replicated in an Ashkenazi population and in additional UK studies. In a pooled analysis comprising 9,533 cases and 11,389 controls, SNPs in WFS1 were strongly associated with diabetes risk. Rare mutations in WFS1 cause Wolfram syndrome; using a gene-centric approach, we show that variation in WFS1 also predisposes to common type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Predisposición Genética a la Enfermedad , Proteínas de la Membrana/genética , Polimorfismo de Nucleótido Simple , Estudios de Casos y Controles , Humanos , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/fisiología
20.
Hum Mol Genet ; 21(2): 371-83, 2012 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-21994764

RESUMEN

Inter-individual DNA methylation variations were frequently hypothesized to alter individual susceptibility to Type 2 Diabetes Mellitus (T2DM). Sequence-influenced methylations were described in T2DM-associated genomic regions, but evidence for direct, sequence-independent association with disease risk is missing. Here, we explore disease-contributing DNA methylation through a stepwise study design: first, a pool-based, genome-scale screen among 1169 case and control individuals revealed an excess of differentially methylated sites in genomic regions that were previously associated with T2DM through genetic studies. Next, in-depth analyses were performed at selected top-ranking regions. A CpG site in the first intron of the FTO gene showed small (3.35%) but significant (P = 0.000021) hypomethylation of cases relative to controls. The effect was independent of the sequence polymorphism in the region and persists among individuals carrying the sequence-risk alleles. The odds of belonging to the T2DM group increased by 6.1% for every 1% decrease in methylation (OR = 1.061, 95% CI: 1.032-1.090), the odds ratio for decrease of 1 standard deviation of methylation (adjusted to gender) was 1.5856 (95% CI: 1.2824-1.9606) and the sensitivity (area under the curve = 0.638, 95% CI: 0.586-0.690; males = 0.675, females = 0.609) was better than that of the strongest known sequence variant. Furthermore, a prospective study in an independent population cohort revealed significant hypomethylation of young individuals that later progressed to T2DM, relative to the individuals who stayed healthy. Further genomic analysis revealed co-localization with gene enhancers and with binding sites for methylation-sensitive transcriptional regulators. The data showed that low methylation level at the analyzed sites is an early marker of T2DM and suggests a novel mechanism by which early-onset, inter-individual methylation variation at isolated non-promoter genomic sites predisposes to T2DM.


Asunto(s)
Metilación de ADN , Diabetes Mellitus Tipo 2/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Adulto , Anciano , Estudios de Casos y Controles , Islas de CpG , Diabetes Mellitus Tipo 2/sangre , Femenino , Humanos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA