Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Int J Mol Sci ; 23(7)2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35408861

RESUMEN

Lipid domains less than 200 nm in size may form a scaffold, enabling the concerted function of plasma membrane proteins. The size-regulating mechanism is under debate. We tested the hypotheses that large values of spontaneous monolayer curvature are incompatible with micrometer-sized domains. Here, we used the transition of photoswitchable lipids from their cylindrical conformation to a conical conformation to increase the negative curvature of a bilayer-forming lipid mixture. In contrast to the hypothesis, pre-existing micrometer-sized domains did not dissipate in our planar bilayers, as indicated by fluorescence images and domain mobility measurements. Elasticity theory supports the observation by predicting the zero free energy gain for splitting large domains into smaller ones. It also indicates an alternative size-determining mechanism: The cone-shaped photolipids reduce the line tension associated with lipid deformations at the phase boundary and thus slow down the kinetics of domain fusion. The competing influence of two approaching domains on the deformation of the intervening lipids is responsible for the kinetic fusion trap. Our experiments indicate that the resulting local energy barrier may restrict the domain size in a dynamic system.


Asunto(s)
Membrana Dobles de Lípidos , Modelos Químicos , Elasticidad , Cinética , Conformación Molecular
2.
Phys Rev Lett ; 124(10): 108102, 2020 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-32216409

RESUMEN

Lipid rafts serve as anchoring platforms for membrane proteins. Thus far they escaped direct observation by light microscopy due to their small size. Here we used differently colored dyes as reporters for the registration of both ordered and disordered lipids from the two leaves of a freestanding bilayer. Photoswitchable lipids dissolved or reformed the domains. Measurements of domain mobility indicated the presence of 120 nm wide ordered and 40 nm wide disordered domains. These sizes are in line with the predicted roles of line tension and membrane undulation as driving forces for alignment.


Asunto(s)
Lípidos de la Membrana/administración & dosificación , Microdominios de Membrana/química , Colesterol/química , Colesterol/metabolismo , Diglicéridos/química , Diglicéridos/metabolismo , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Microdominios de Membrana/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Microscopía Confocal/métodos , Modelos Químicos , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Espectrometría de Fluorescencia/métodos
3.
Nat Chem Biol ; 14(4): 396-404, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29556099

RESUMEN

Transient receptor potential canonical (TRPC) channels TRPC3, TRPC6 and TRPC7 are able to sense the lipid messenger diacylglycerol (DAG). The DAG-sensing and lipid-gating processes in these ion channels are still unknown. To gain insights into the lipid-sensing principle, we generated a DAG photoswitch, OptoDArG, that enabled efficient control of TRPC3 by light. A structure-guided mutagenesis screen of the TRPC3 pore domain unveiled a single glycine residue behind the selectivity filter (G652) that is exposed to lipid through a subunit-joining fenestration. Exchange of G652 with larger residues altered the ability of TRPC3 to discriminate between different DAG molecules. Light-controlled activation-deactivation cycling of TRPC3 channels by an OptoDArG-mediated optical 'lipid clamp' identified pore domain fenestrations as pivotal elements of the channel´s lipid-sensing machinery. We provide evidence for a novel concept of lipid sensing by TRPC channels based on a lateral fenestration in the pore domain that accommodates lipid mediators to control gating.


Asunto(s)
Activación del Canal Iónico , Lípidos/química , Canales Catiónicos TRPC/química , Animales , Calcio/química , Glicina/química , Células HEK293 , Humanos , Cinética , Luz , Mutagénesis , Mutación , Óptica y Fotónica , Fotoquímica , Unión Proteica , Ratas , Transducción de Señal , Canales Catiónicos TRPV/química
4.
Anal Chem ; 91(17): 11367-11373, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31380630

RESUMEN

We present 1D and 2D NMR experiments that provide in situ insights into photoinduced isomerizations. Irradiation during the mixing period of an exchange spectroscopy (EXSY) experiment leads to characteristic cross peaks in 2D spectra. The phototriggered exchange of magnetization occurring in photoswitchable (Z)- and (E)-isomers of three selected azo compounds provides information on the dynamic E/Z equilibria. We report the dependence of the diagonal-to-cross-peak ratio on concentration, light intensity, and mixing time. In analogy to exchange spectroscopy, this ratio mirrors the efficiency of light induced molecular transformations. Furthermore, we present a time-saving 1D version and a combined light/phase cycle scheme for enhanced detectability of photoinduced changes in the spectrum. This insight into light-induced structural changes is highly suited to study macromolecules, in which photoswitchable units trigger conformational changes.

5.
Chemistry ; 21(11): 4368-76, 2015 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-25655090

RESUMEN

One of the rare alternative reagents for the reduction of carbon-carbon double bonds is diimide (HN=NH), which can be generated in situ from hydrazine hydrate (N2H4⋅H2O) and O2. Although this selective method is extremely clean and powerful, it is rarely used, as the rate-determining oxidation of hydrazine in the absence of a catalyst is relatively slow using conventional batch protocols. A continuous high-temperature/high-pressure methodology dramatically enhances the initial oxidation step, at the same time allowing for a safe and scalable processing of the hazardous reaction mixture. Simple alkenes can be selectively reduced within 10-20 min at 100-120 °C and 20 bar O2 pressure. The development of a multi-injection reactor platform for the periodic addition of N2H4⋅H2O enables the reduction of less reactive olefins even at lower reaction temperatures. This concept was utilized for the highly selective reduction of artemisinic acid to dihydroartemisinic acid, the precursor molecule for the semisynthesis of the antimalarial drug artemisinin. The industrially relevant reduction was achieved by using four consecutive liquid feeds (of N2H4⋅H2O) and residence time units resulting in a highly selective reduction within approximately 40 min at 60 °C and 20 bar O2 pressure, providing dihydroartemisinic acid in ≥93% yield and ≥95% selectivity.


Asunto(s)
Antimaláricos/química , Antimaláricos/síntesis química , Artemisininas/química , Artemisininas/uso terapéutico , Estructura Molecular
6.
Proc Natl Acad Sci U S A ; 108(26): 10556-61, 2011 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-21653882

RESUMEN

Cardiac transient receptor potential canonical (TRPC) channels are crucial upstream components of Ca(2+)/calcineurin/nuclear factor of activated T cells (NFAT) signaling, thereby controlling cardiac transcriptional programs. The linkage between TRPC-mediated Ca(2+) signals and NFAT activity is still incompletely understood. TRPC conductances may govern calcineurin activity and NFAT translocation by supplying Ca(2+) either directly through the TRPC pore into a regulatory microdomain or indirectly via promotion of voltage-dependent Ca(2+) entry. Here, we show that a point mutation in the TRPC3 selectivity filter (E630Q), which disrupts Ca(2+) permeability but preserves monovalent permeation, abrogates agonist-induced NFAT signaling in HEK293 cells as well as in murine HL-1 atrial myocytes. The E630Q mutation fully retains the ability to convert phospholipase C-linked stimuli into L-type (Ca(V)1.2) channel-mediated Ca(2+) entry in HL-1 cells, thereby generating a dihydropyridine-sensitive Ca(2+) signal that is isolated from the NFAT pathway. Prevention of PKC-dependent modulation of TRPC3 by either inhibition of cellular kinase activity or mutation of a critical phosphorylation site in TRPC3 (T573A), which disrupts targeting of calcineurin into the channel complex, converts cardiac TRPC3-mediated Ca(2+) signaling into a transcriptionally silent mode. Thus, we demonstrate a dichotomy of TRPC-mediated Ca(2+) signaling in the heart constituting two distinct pathways that are differentially linked to gene transcription. Coupling of TRPC3 activity to NFAT translocation requires microdomain Ca(2+) signaling by PKC-modified TRPC3 complexes. Our results identify TRPC3 as a pivotal signaling gateway in Ca(2+)-dependent control of cardiac gene expression.


Asunto(s)
Calcineurina/metabolismo , Calcio/metabolismo , Miocardio/metabolismo , Proteína Quinasa C/metabolismo , Transducción de Señal , Canales Catiónicos TRPC/metabolismo , Animales , Línea Celular , Humanos , Transporte Iónico , Ratones , Miocardio/citología , Miocardio/enzimología , Factores de Transcripción NFATC/metabolismo , Fosforilación
7.
Angew Chem Int Ed Engl ; 53(43): 11557-61, 2014 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-25196172

RESUMEN

To efficiently drive chemical reactions, it is often necessary to influence an equilibrium by removing one or more components from the reaction space. Such manipulation is straightforward in open systems, for example, by distillation of a volatile product from the reaction mixture. Herein we describe a unique high-temperature/high-pressure gas/liquid continuous-flow process for the rhodium-catalyzed decarbonylation of aldehydes. The carbon monoxide released during the reaction is carried with a stream of an inert gas through the center of the tubing, whereas the liquid feed travels as an annular film along the wall of the channel. As a consequence, carbon monoxide is effectively vaporized from the liquid phase into the gas phase and stripped from the reaction mixture, thus driving the equilibrium to the product and preventing poisoning of the catalyst. This approach enables the catalytic decarbonylation of a variety of aldehydes with unprecedented efficiency with a standard coil-based flow device.

8.
Nat Commun ; 15(1): 1139, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326372

RESUMEN

Optically-induced changes in membrane capacitance may regulate neuronal activity without requiring genetic modifications. Previously, they mainly relied on sudden temperature jumps due to light absorption by membrane-associated nanomaterials or water. Yet, nanomaterial targeting or the required high infrared light intensities obstruct broad applicability. Now, we propose a very versatile approach: photolipids (azobenzene-containing diacylglycerols) mediate light-triggered cellular de- or hyperpolarization. As planar bilayer experiments show, the respective currents emerge from millisecond-timescale changes in bilayer capacitance. UV light changes photolipid conformation, which awards embedding plasma membranes with increased capacitance and evokes depolarizing currents. They open voltage-gated sodium channels in cells, generating action potentials. Blue light reduces the area per photolipid, decreasing membrane capacitance and eliciting hyperpolarization. If present, mechanosensitive channels respond to the increased mechanical membrane tension, generating large depolarizing currents that elicit action potentials. Membrane self-insertion of administered photolipids and focused illumination allows cell excitation with high spatiotemporal control.


Asunto(s)
Neuronas , Rayos Ultravioleta , Potenciales de Acción , Potenciales de la Membrana , Membrana Celular , Neuronas/fisiología
9.
J Pharmacol Exp Ther ; 344(1): 33-40, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23010361

RESUMEN

TRPC-mediated Ca(2+) entry has been implicated in the control of smooth muscle proliferation and might represent a pivotal mechanism underlying in-stent restenosis. As we have observed significant expression of TRPC3 in human smooth muscle from the coronary artery as well as the aorta, we tested the efficiency of a recently discovered TRPC3 selective Ca(2+) entry blocker Pyr3 to prevent vascular smooth muscle proliferation and stent implantation-induced hyperplasia of human aorta. The effect of Pyr3 on proliferation was measured by detection of BrdU incorporation and PCNA expression in human coronary smooth muscle and microvascular endothelium, which displays significantly smaller expression levels of TRPC3 as compared with smooth muscle. Pyr3 inhibited smooth muscle proliferation but lacked detectable effects on endothelial proliferation. Measurements of ATP-induced Ca(2+) signals revealed that Pyr3 suppressed agonist-induced Ca(2+) entry more effectively in vascular smooth muscle than in endothelial cells. Inhibitory effects of Pyr3 on stent implantation-induced arterial injury was tested using a novel in vitro model of in-stent hyperplasia in human arteries based on organ typical culture of human aortic constructs. Pyr3 effectively prevented increases in tissue levels of PCNA and Ki-67 at 2 weeks after stent implantation into human aortae. Similarly, proliferation markers were significantly suppressed when implanting a Pyr3-releasing stent prototype as compared with a bare metal stent (BMS) control. Our results suggest TRPC3 as a potential target for pharmacological control of smooth muscle proliferation. Selectively inhibition of TRPC Ca(2+) entry channels in vascular smooth muscle is suggested as a promising strategy for in-stent restenosis prevention.


Asunto(s)
Arterias/efectos de los fármacos , Oclusión de Injerto Vascular/prevención & control , Pirazoles/farmacología , Stents/efectos adversos , Canales Catiónicos TRPC/antagonistas & inhibidores , Antimetabolitos , Western Blotting , Bromodesoxiuridina , Señalización del Calcio/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Vasos Coronarios/citología , Vasos Coronarios/efectos de los fármacos , Humanos , Hiperplasia/fisiopatología , Inmunohistoquímica , Isoenzimas/química , Miocitos del Músculo Liso/efectos de los fármacos , Neointima/patología , Técnicas de Cultivo de Órganos , ARN/biosíntesis , ARN/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa , Fijación del Tejido
10.
Org Biomol Chem ; 11(39): 6806-13, 2013 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-24175328

RESUMEN

The development of multistep continuous flow reactions for the synthesis of important intermediates for the pharmaceutical industry is still a significant challenge. In the present contribution the biaryl-hydrazine unit of Atazanavir, an important HIV protease inhibitor, was prepared in a three-step continuous flow sequence in 74% overall yield. The synthesis involved Pd-catalyzed Suzuki­Miyaura cross-coupling, followed by hydrazone formation and a subsequent hydrogenation step, and additionally incorporates a liquid­liquid extraction step.


Asunto(s)
Inhibidores de la Proteasa del VIH/síntesis química , Oligopéptidos/síntesis química , Piridinas/síntesis química , Sulfato de Atazanavir , Inhibidores de la Proteasa del VIH/química , Estructura Molecular , Oligopéptidos/química , Piridinas/química
11.
bioRxiv ; 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37645959

RESUMEN

Optically-induced changes in membrane capacitance may regulate neuronal activity without requiring genetic modifications. Previously, they mainly relied on sudden temperature jumps due to light absorption by membrane-associated nanomaterials or water. Yet, nanomaterial targeting or the required high infrared light intensities obstruct broad applicability. Now, we propose a very versatile approach: photolipids (azobenzene-containing diacylglycerols) mediate light-triggered cellular de- or hyperpolarization. As planar bilayer experiments show, the respective currents emerge from millisecond-timescale changes in bilayer capacitance. UV light changes photolipid conformation, which awards embedding plasma membranes with increased capacitance and evokes depolarizing currents. They open voltage-gated sodium channels in cells, generating action potentials. Blue light reduces the area per photolipid, decreasing membrane capacitance and eliciting hyperpolarization. If present, mechanosensitive channels respond to the increased mechanical membrane tension, generating large depolarizing currents that elicit action potentials. Membrane self-insertion of administered photolipids and focused illumination allows cell excitation with high spatiotemporal control.

12.
Dalton Trans ; 51(29): 11086-11097, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35796232

RESUMEN

Multinuclear tungsten complexes are intriguing candidates for new contrast media that can provide substantial improvements in CT imaging diagnostics. Herein, we present a ligand strategy, based on amino acids, and mono- and disubstituted EDTA derivatives, that enables the development of stable complexes with high tungsten content and reasonably low osmolality. Accordingly, a series of neutral and monoanionic di-µ-sulfido W(V) dimers have been synthesized via a convenient procedure utilizing microwave heating in combination with ion-pair HPLC reaction monitoring. The compounds were characterized in detail by various techniques, including ESI-HRMS, NMR spectroscopy, HPLC, elemental analysis, and X-ray crystallography. The aqueous stability of the complexes under physiologically relevant conditions, and during heat sterilization was also examined as an initial assessment of their potential applicability as radiocontrast agents. Monoanionic complexes featuring monosubstituted EDTA derivatives have demonstrated high stability, while producing a lower number of ions in solution (resulting in lower osmolality) in comparison to their bis-anionic EDTA counterparts. Nevertheless, they exhibited insufficient water solubility for application as intravascular contrast agents. However, our study showed that aqueous solubility of this type of complexes can be tuned by small modifications in the ligand structure.


Asunto(s)
Medios de Contraste , Tungsteno , Medios de Contraste/química , Cristalografía por Rayos X , Ácido Edético , Ligandos , Modelos Moleculares , Polímeros , Azufre , Tomografía Computarizada por Rayos X , Tungsteno/química , Agua/química
13.
Chemistry ; 17(43): 11956-68, 2011 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-21932289

RESUMEN

The popularity of dedicated microwave reactors in many academic and industrial laboratories has produced a plethora of synthetic protocols that are based on this enabling technology. In the majority of examples, transformations that require several hours when performed using conventional heating under reflux conditions reach completion in a few minutes or even seconds in sealed-vessel, autoclave-type, microwave reactors. However, one severe drawback of microwave chemistry is the difficulty in scaling this technology to a production-scale level. This Concept article demonstrates that this limitation can be overcome by translating batch microwave chemistry to scalable continuous-flow processes. For this purpose, conventionally heated micro- or mesofluidic flow devices fitted with a back-pressure regulator are employed, in which the high temperatures and pressures attainable in a sealed-vessel microwave chemistry batch experiment can be mimicked.

14.
J Org Chem ; 76(16): 6657-69, 2011 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-21721531

RESUMEN

A series of 4-(pyrazol-1-yl)carboxanilides active as inhibitors of canonical transient receptor potential channels were synthesized in an efficient three-step protocol using controlled microwave heating. The general synthetic strategy involves condensation of 4-nitrophenylhydrazine with appropriate 1,3-dicarbonyl building blocks, followed by reduction of the nitro group to the amine, which is then amidated with carboxylic acids. Compared to the conventional protocol a dramatic reduction in overall processing time from ~2 days to a few minutes was achieved, accompanied by significantly improved product yields. In addition, the first two steps in the synthetic pathway were also performed under continuous flow conditions providing similar isolated product yields. As an alternative to the three-step protocol, a novel two-step route to the desired 4-(pyrazol-1-yl)carboxanilides was devised involving condensation of 4-bromophenylhydrazine with appropriate 1,3-dicarbonyl building blocks, followed by Pd-catalyzed Buchwald-Hartwig amidation with carboxylic acid amides.


Asunto(s)
Amidas/química , Carboxina/análogos & derivados , Carboxina/síntesis química , Pirazoles/síntesis química , Carboxina/química , Catálisis , Calefacción , Microondas , Estructura Molecular , Pirazoles/química
15.
Beilstein J Org Chem ; 7: 503-17, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21647324

RESUMEN

The decomposition of 5-benzhydryl-1H-tetrazole in an N-methyl-2-pyrrolidone/acetic acid/water mixture was investigated under a variety of high-temperature reaction conditions. Employing a sealed Pyrex glass vial and batch microwave conditions at 240 °C, the tetrazole is comparatively stable and complete decomposition to diphenylmethane requires more than 8 h. Similar kinetic data were obtained in conductively heated flow devices with either stainless steel or Hastelloy coils in the same temperature region. In contrast, in a flow instrument that utilizes direct electric resistance heating of the reactor coil, tetrazole decomposition was dramatically accelerated with rate constants increased by two orders of magnitude. When 5-benzhydryl-1H-tetrazole was exposed to 220 °C in this type of flow reactor, decomposition to diphenylmethane was complete within 10 min. The mechanism and kinetic parameters of tetrazole decomposition under a variety of reaction conditions were investigated. A number of possible explanations for these highly unusual rate accelerations are presented. In addition, general aspects of reactor degradation, corrosion and contamination effects of importance to continuous flow chemistry are discussed.

16.
J Photochem Photobiol B ; 224: 112320, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34600201

RESUMEN

Membrane proteins can be regulated by alterations in material properties intrinsic to the hosting lipid bilayer. Here, we investigated whether the reversible photoisomerization of bilayer-embedded diacylglycerols (OptoDArG) with two azobenzene-containing acyl chains may trigger such regulatory events. We observed an augmented open probability of the mechanosensitive model channel gramicidin A (gA) upon photoisomerizing OptoDArG's acyl chains from trans to cis: integral planar bilayer conductance brought forth by hundreds of simultaneously conducting gA dimers increased by typically >50% - in good agreement with the observed increase in single-channel lifetime. Further, (i) increments in the electrical capacitance of planar lipid bilayers and protrusion length of aspirated giant unilamellar vesicles into suction pipettes, as well as (ii) changes of small-angle X-ray scattering of multilamellar vesicles indicated that spontaneous curvature, hydrophobic thickness, and bending elasticity decreased upon switching from trans- to cis-OptoDArG. Our bilayer elasticity model for gA supports the causal relationship between changes in gA activity and bilayer material properties upon photoisomerization. Thus, we conclude that photolipids are deployable for converting bilayers of potentially diverse origins into light-gated actuators for mechanosensitive proteins.


Asunto(s)
Gramicidina/química , Canales Iónicos/efectos de la radiación , Luz , Membrana Dobles de Lípidos/efectos de la radiación , Canales Iónicos/química , Isomerismo , Membrana Dobles de Lípidos/química , Proteínas de la Membrana/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X
17.
Chemistry ; 15(4): 1001-10, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19086042

RESUMEN

Mizoroki-Heck couplings of aryl iodides and bromides with butyl acrylate were investigated as model systems to perform transition-metal-catalyzed transformations in continuous-flow mode. As a suitable ligandless catalyst system for the Mizoroki-Heck couplings both heterogeneous and homogeneous Pd catalysts (Pd/C and Pd acetate) were considered. In batch mode, full conversion with excellent selectivity for coupling was achieved applying high-temperature microwave conditions with Pd levels as low as 10(-3) mol %. In continuous-flow mode with Pd/C as a catalyst, significant Pd leaching from the heterogeneous catalyst was observed as these Mizoroki-Heck couplings proceed by a homogeneous mechanism involving soluble Pd colloids/nanoparticles. By applying low levels of Pd acetate as homogeneous Pd precatalyst, successful continuous-flow Mizoroki-Heck transformations were performed in a high-temperature/pressure flow reactor. For both aryl iodides and bromides, high isolated product yields of the cinnamic esters were obtained. Mechanistic issues involving the Pd-catalyzed Mizoroki-Heck reactions are discussed.

18.
Chemistry ; 15(43): 11608-18, 2009 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-19774573

RESUMEN

The concept of specific microwave effects in solid/liquid catalytic processes resulting from the selective heating of a microwave-absorbing heterogeneous transition-metal catalyst by using 2.45 GHz microwave irradiation was evaluated. As model transformations Ni/C-, Cu/C-, Pd/C-, and Pd/Al2O3-catalyzed carbon-carbon/carbon-heteroatom cross-couplings and hydrogenation reactions were investigated. To probe the existence of specific microwave effects by means of selective catalyst heating in these transformations, control experiments comparing microwave dielectric heating and conventional thermal heating at the same reaction temperature were performed. Although the supported metal catalysts were experimentally found to be strongly microwave absorbing, for all chemistry examples investigated herein no differences in reaction rate or selectivity between microwave and conventional heating experiments under carefully controlled conditions were observed. This was true also for reactions that use low-absorbing or microwave transparent solvents, and was independent of the microwave absorbtivity of the catalyst support material. In the case of hydrogenation reactions, the stirring speed was found to be a critical factor on the mass transfer between gas and liquid phase, influencing the rate of the hydrogenation in both microwave and conventionally heated experiments.

19.
Cell Calcium ; 79: 27-34, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30798155

RESUMEN

Mutation of a single residue within the recently identified lipid (diacylglycerol) recognition window of TRPC3 (G652A) was found to abolish channel activation via endogenous lipid mediators while retaining sensitivity to the non-lipid activator GSK1702934A (abb. GSK). The mechanism of this change in chemical sensing by TRPC3 was analysed by whole-cell and single channel electrophysiology as well as Ca2+ imaging. Currents initiated by GSK or the structural (benzimidazole) analog BI-2 were significantly larger in cells expressing the G652A mutant as compared to wild type (WT) channels. Whole cell patch-clamp experiments revealed that enhanced sensitivity to benzimidazoles was not due to augmented potency but reflected enhanced efficacy of benzimidazoles. Single channel analysis demonstrated that neither unitary conductance nor I-V characteristics were altered by the G652A mutation, precluding altered pore architecture as the basis of enhanced efficacy. These experiments uncovered a distinct gating pattern of BI-2-activated G652A mutant channels, featuring a unique, long-lived open state. Moreover, G652A mutant channels lacked PLC/diacylglycerol mediated cross-desensitization for GSK activation as typically observed for TRPC3. Lack of desensitization in G652A channels enabled large GSK/BI-2-induced Ca2+ signals in conditions that fully desensitized TRPC3 WT channels. We demonstrate that the lipid-recognition window of TRPC3 determines both sensitivity to lipid mediators and chemical gating by benzimidazoles. TRPC3 mutations within this lipid interaction site are suggested as a basis for chemogenetic targeting of TRPC3-signaling.


Asunto(s)
Bencimidazoles/farmacología , Diglicéridos/genética , Mutación Puntual/genética , Canales Catiónicos TRPC/genética , Canales Catiónicos TRPC/metabolismo , Calcio/metabolismo , Células Cultivadas , Células HEK293 , Humanos , Transducción de Señal/efectos de los fármacos
20.
Chem Sci ; 10(9): 2837-2842, 2019 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-30997005

RESUMEN

Lipid-gated TRPC channels are highly expressed in cardiovascular and neuronal tissues. Exerting precise pharmacological control over their activity in native cells is expected to serve as a basis for the development of novel therapies. Here we report on a new photopharmacological tool that enables manipulation of TRPC3 channels by light, in a manner independent of lipid metabolism and with higher temporal precision than lipid photopharmacology. Using the azobenzene photoswitch moiety, we modified GSK1702934A to generate light-controlled TRPC agonists. We obtained one light-sensitive molecule (OptoBI-1) that allows us to exert efficient, light-mediated control over TRPC3 activity and the associated cellular Ca2+ signaling. OptoBI-1 enabled high-precision, temporal control of TRPC3-linked cell functions such as neuronal firing and endothelial Ca2+ transients. With these findings, we introduce a novel photopharmacological strategy to control native TRPC conductances.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA