Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Food Microbiol ; 88: 103400, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31997757

RESUMEN

The purpose of this study was to identify Escherichia coli isolates obtained from patients experiencing acute gastroenteritis that possess the locus of heat resistance (LHR) and characterize their heat resistance upon exposure to temperatures of 60 °C and 71 °C. From a collection of 613 clinical E. coli strains, 3 heat resistant E. coli isolates were identified. Two of the 3 isolates were stx1 positive; no isolates possessed stx2 as determined by qPCR. D60-values of heat resistant isolates all exceeded 10.20 min with one isolate's D60-values ranging from 20.46 to 72.47 min. The presence of 4% additional NaCl significantly increased D60-values of 2 clinical isolates. Cell reductions of heat resistant isolates in ground beef patties grilled to 60 °C and 71 °C remained above 2.8 and 4.9 log CFU/mL, respectively, compared to reductions of 6.1 log CFU/mL and greater in heat sensitive E. coli. Constitutive expression of novel Clp protease ClpK, encoded on open reading frame 3 of the LHR, was identified in all heat resistant isolates by SDS-PAGE and peptide mass fingerprinting. This data is the first to report heat resistant E. coli possessing the LHR involved in clinical infection, highlighting the potential threat of heat resistant enteric pathogens on food safety.


Asunto(s)
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Gastroenteritis/microbiología , Sitios Genéticos , Calor , Enfermedad Aguda , Recuento de Colonia Microbiana/estadística & datos numéricos , Escherichia coli/patogenicidad , Infecciones por Escherichia coli/microbiología , Inocuidad de los Alimentos , Enfermedades Transmitidas por los Alimentos/microbiología , Humanos , Viabilidad Microbiana , Carne Roja/microbiología , Factores de Virulencia/genética
2.
Microorganisms ; 10(4)2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35456864

RESUMEN

Non-O157 serogroups contribute significantly to the burden of disease caused by Shiga toxin-producing Escherichia coli (STEC) and have been underrecognized by traditional detection algorithms. We described the epidemiology of non-O157 STEC in Alberta, Canada for the period of 2018 to 2021. All non-O157 STEC isolated from clinical samples were submitted for serotyping and qPCR targeting the stx1 and stx2 genes. A total of 729 isolates were identified. Increased detection occurred over the summer months, peaking in July. Patients 18 years and younger made up 42.4% of cases, with 31.1% in those 0-9 years of age. There was a slight female predominance (399/729, 54.7%) A total of 50 different serogroups were detected; the most common were O26 (30.3%), O103 (15.9%), O111 (12.8%), O121 (11.0%), O118 (3.3%) and O71 (2.9%). These six serogroups made up 76.2% of all isolates. In total, 567 (77.8%) were positive for stx1, 114 (15.6%) were positive for stx2 and 48 (6.6%) were positive for both stx1 and stx2. A wide variety of non-O157 serogroups have been detected in Alberta, with the most frequent serogroups differing from other locations. These results highlight the need for further characterization of their virulence factors and clinical impact.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA