Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Pathol ; 188(4): 853-862, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29355514

RESUMEN

Wnt/ß-catenin signaling is necessary for normal lung development, and abnormal Wnt signaling contributes to the pathogenesis of both bronchopulmonary dysplasia (BPD) and idiopathic pulmonary fibrosis (IPF), fibrotic lung diseases that occur during infancy and aging, respectively. Using a library of human normal and diseased human lung samples, we identified a distinct signature of nuclear accumulation of ß-catenin phosphorylated at tyrosine 489 and epithelial cell cytosolic localization of ß-catenin phosphorylated at tyrosine 654 in early normal lung development and fibrotic lung diseases BPD and IPF. Furthermore, this signature was recapitulated in murine models of BPD and IPF. Image analysis of immunofluorescence colocalization demonstrated a consistent pattern of elevated nuclear phosphorylated ß-catenin in the lung epithelium and surrounding mesenchyme in BPD and IPF, closely resembling the pattern observed in 18-week fetal lung. Nuclear ß-catenin phosphorylated at tyrosine 489 associated with an increased expression of Wnt target gene AXIN2, suggesting that the observed ß-catenin signature is of functional significance during normal development and injury repair. The association of specific modifications of ß-catenin during normal lung development and again in response to lung injury supports the widely held concept that repair of lung injury involves the recapitulation of developmental programs. Furthermore, these observations suggest that ß-catenin phosphorylation has potential as a therapeutic target for the treatment and prevention of both BPD and IPF.


Asunto(s)
Displasia Broncopulmonar/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , beta Catenina/metabolismo , Células A549 , Adulto , Animales , Animales Recién Nacidos , Proteína Axina/metabolismo , Displasia Broncopulmonar/patología , Núcleo Celular/metabolismo , Células Epiteliales/metabolismo , Femenino , Feto/metabolismo , Humanos , Fibrosis Pulmonar Idiopática/patología , Pulmón/metabolismo , Pulmón/patología , Ratones Endogámicos C57BL , Fosforilación , Embarazo , Segundo Trimestre del Embarazo , Procesamiento Proteico-Postraduccional , Transducción de Señal , Tirosina/metabolismo
2.
Am J Respir Cell Mol Biol ; 58(6): 736-744, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29314863

RESUMEN

Loss of secretory IgA is common in the small airways of patients with chronic obstructive pulmonary disease and may contribute to disease pathogenesis. Using mice that lack secretory IgA in the airways due to genetic deficiency of polymeric Ig receptor (pIgR-/- mice), we investigated the role of neutrophils in driving the fibrotic small airway wall remodeling and emphysema that develops spontaneously in these mice. By flow cytometry, we found an increase in the percentage of neutrophils among CD45+ cells in the lungs, as well as an increase in total neutrophils, in pIgR-/- mice compared with wild-type controls. This increase in neutrophils in pIgR-/- mice was associated with elastin degradation in the alveolar compartment and around small airways, along with increased collagen deposition in small airway walls. Neutrophil depletion using anti-Ly6G antibodies or treatment with broad-spectrum antibiotics inhibited development of both emphysema and small airway remodeling, suggesting that airway bacteria provide the stimulus for deleterious neutrophilic inflammation in this model. Exogenous bacterial challenge using lysates prepared from pathogenic and nonpathogenic bacteria worsened neutrophilic inflammation and lung remodeling in pIgR-/- mice. This phenotype was abrogated by antiinflammatory therapy with roflumilast. Together, these studies support the concept that disruption of the mucosal immune barrier in small airways contributes to chronic obstructive pulmonary disease progression by allowing bacteria to stimulate chronic neutrophilic inflammation, which, in turn, drives progressive airway wall fibrosis and emphysematous changes in the lung parenchyma.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias)/fisiología , Neutrófilos/patología , Neumonía Bacteriana/patología , Enfermedad Pulmonar Obstructiva Crónica/etiología , Remodelación de las Vías Aéreas (Respiratorias)/efectos de los fármacos , Aminopiridinas/farmacología , Animales , Bacillus/patogenicidad , Benzamidas/farmacología , Ciclopropanos/farmacología , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Ratones Mutantes , Neutrófilos/microbiología , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Enfisema Pulmonar/patología , Receptores de Superficie Celular/genética
3.
Am J Respir Cell Mol Biol ; 59(2): 158-166, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29625013

RESUMEN

Alveolar type II (AT2) epithelial cells are uniquely specialized to produce surfactant in the lung and act as progenitor cells in the process of repair after lung injury. AT2 cell injury has been implicated in several lung diseases, including idiopathic pulmonary fibrosis and bronchopulmonary dysplasia. The inability to maintain primary AT2 cells in culture has been a significant barrier in the investigation of pulmonary biology. We have addressed this knowledge gap by developing a three-dimensional (3D) organotypic coculture using primary human fetal AT2 cells and pulmonary fibroblasts. Grown on top of matrix-embedded fibroblasts, the primary human AT2 cells establish a monolayer and have direct contact with the underlying pulmonary fibroblasts. Unlike conventional two-dimensional (2D) culture, the structural and functional phenotype of the AT2 cells in our 3D organotypic culture was preserved over 7 days of culture, as evidenced by the presence of lamellar bodies and by production of surfactant proteins B and C. Importantly, the AT2 cells in 3D cocultures maintained the ability to replicate, with approximately 60% of AT2 cells staining positive for the proliferation marker Ki67, whereas no such proliferation is evident in 2D cultures of the same primary AT2 cells. This organotypic culture system enables interrogation of AT2 epithelial biology by providing a reductionist in vitro model in which to investigate the response of AT2 epithelial cells and AT2 cell-fibroblast interactions during lung injury and repair.


Asunto(s)
Comunicación Celular/fisiología , Células Epiteliales/metabolismo , Lesión Pulmonar/patología , Pulmón/patología , Células Cultivadas , Técnicas de Cocultivo , Fibroblastos/metabolismo , Humanos , Fenotipo
4.
J Immunol ; 196(4): 1891-9, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26773153

RESUMEN

Although numerous studies have demonstrated a critical role for canonical NF-κB signaling in inflammation and disease, the function of the noncanonical NF-κB pathway remains ill-defined. In lung tissue from patients with acute respiratory distress syndrome, we identified increased expression of the noncanonical pathway component p100/p52. To investigate the effects of p52 expression in vivo, we generated a novel transgenic mouse model with inducible expression of p52 in Clara cell secretory protein-expressing airway epithelial cells. Although p52 overexpression alone did not cause significant inflammation, p52 overexpression caused increased lung inflammation, injury, and mortality following intratracheal delivery of Escherichia coli LPS. No differences in cytokine/chemokine expression were measured between p52-overexpressing mice and controls, but increased apoptosis of Clara cell secretory protein-positive airway epithelial cells was observed in transgenic mice after LPS stimulation. In vitro studies in lung epithelial cells showed that p52 overexpression reduced cell survival and increased the expression of several proapoptotic genes during cellular stress. Collectively, these studies demonstrate a novel role for p52 in cell survival/apoptosis of airway epithelial cells and implicate noncanonical NF-κB signaling in the pathogenesis of acute respiratory distress syndrome.


Asunto(s)
Apoptosis/inmunología , Subunidad p52 de NF-kappa B/inmunología , Síndrome de Dificultad Respiratoria/patología , Mucosa Respiratoria/patología , Animales , Western Blotting , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunohistoquímica , Lipopolisacáridos/toxicidad , Ratones , Ratones Transgénicos , Subunidad p52 de NF-kappa B/biosíntesis , Neumonía/inmunología , Neumonía/patología , Reacción en Cadena en Tiempo Real de la Polimerasa , Síndrome de Dificultad Respiratoria/inmunología , Mucosa Respiratoria/inmunología , Transducción de Señal/inmunología , Regulación hacia Arriba
5.
Development ; 141(24): 4751-62, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25395457

RESUMEN

Integrin-dependent interactions between cells and extracellular matrix regulate lung development; however, specific roles for ß1-containing integrins in individual cell types, including epithelial cells, remain incompletely understood. In this study, the functional importance of ß1 integrin in lung epithelium during mouse lung development was investigated by deleting the integrin from E10.5 onwards using surfactant protein C promoter-driven Cre. These mutant mice appeared normal at birth but failed to gain weight appropriately and died by 4 months of age with severe hypoxemia. Defects in airway branching morphogenesis in association with impaired epithelial cell adhesion and migration, as well as alveolarization defects and persistent macrophage-mediated inflammation were identified. Using an inducible system to delete ß1 integrin after completion of airway branching, we showed that alveolarization defects, characterized by disrupted secondary septation, abnormal alveolar epithelial cell differentiation, excessive collagen I and elastin deposition, and hypercellularity of the mesenchyme occurred independently of airway branching defects. By depleting macrophages using liposomal clodronate, we found that alveolarization defects were secondary to persistent alveolar inflammation. ß1 integrin-deficient alveolar epithelial cells produced excessive monocyte chemoattractant protein 1 and reactive oxygen species, suggesting a direct role for ß1 integrin in regulating alveolar homeostasis. Taken together, these studies define distinct functions of epithelial ß1 integrin during both early and late lung development that affect airway branching morphogenesis, epithelial cell differentiation, alveolar septation and regulation of alveolar homeostasis.


Asunto(s)
Células Epiteliales/metabolismo , Integrina beta1/metabolismo , Pulmón/embriología , Organogénesis/fisiología , Alveolos Pulmonares/embriología , Animales , Lavado Broncoalveolar , Adhesión Celular/fisiología , Movimiento Celular/fisiología , Quimiocina CCL2/metabolismo , Ensayo de Inmunoadsorción Enzimática , Matriz Extracelular/metabolismo , Integrasas/metabolismo , Ratones , Microscopía Confocal , Proteína C Asociada a Surfactante Pulmonar/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico
6.
Am J Pathol ; 186(7): 1786-1800, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27181406

RESUMEN

The highly orchestrated interactions between the epithelium and mesenchyme required for normal lung development can be disrupted by perinatal inflammation in preterm infants, although the mechanisms are incompletely understood. We used transgenic (inhibitory κB kinase ß transactivated) mice that conditionally express an activator of the NF-κB pathway in airway epithelium to investigate the impact of epithelial-derived inflammation during lung development. Epithelial NF-κB activation selectively impaired saccular stage lung development, with a phenotype comprising rapidly progressive distal airspace dilation, impaired gas exchange, and perinatal lethality. Epithelial-derived inflammation resulted in disrupted elastic fiber organization and down-regulation of elastin assembly components, including fibulins 4 and 5, lysyl oxidase like-1, and fibrillin-1. Fibulin-5 expression by saccular stage lung fibroblasts was consistently inhibited by treatment with bronchoalveolar lavage fluid from inhibitory κB kinase ß transactivated mice, Escherichia coli lipopolysaccharide, or tracheal aspirates from preterm infants exposed to chorioamnionitis. Expression of a dominant NF-κB inhibitor in fibroblasts restored fibulin-5 expression after lipopolysaccharide treatment, whereas reconstitution of fibulin-5 rescued extracellular elastin assembly by saccular stage lung fibroblasts. Elastin organization was disrupted in saccular stage lungs of preterm infants exposed to systemic inflammation. Our study reveals a critical window for elastin assembly during the saccular stage that is disrupted by inflammatory signaling and could be amenable to interventions that restore elastic fiber assembly in the developing lung.


Asunto(s)
Elastina/metabolismo , Epitelio/metabolismo , Inflamación/complicaciones , Pulmón/embriología , Animales , Western Blotting , Desarrollo Fetal , Humanos , Inmunohistoquímica , Recién Nacido , Recien Nacido Prematuro , Inflamación/metabolismo , Ratones , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Modelos Animales , FN-kappa B/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
7.
Am J Physiol Lung Cell Mol Physiol ; 310(3): L249-62, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26637636

RESUMEN

Pulmonary hypertension (PH) complicating chronic parenchymal lung disease, such as idiopathic pulmonary fibrosis, results in significant morbidity and mortality. Since the hypoxia-inducible factor (HIF) signaling pathway is important for development of pulmonary hypertension in chronic hypoxia, we investigated whether HIF signaling in vascular endothelium regulates development of PH related to pulmonary fibrosis. We generated a transgenic model in which HIF is deleted within vascular endothelial cells and then exposed these mice to chronic intraperitoneal bleomycin to induce PH associated with lung fibrosis. Although no differences in the degree of fibrotic remodeling were observed, we found that endothelial HIF-deficient mice were protected against development of PH, including right ventricle and pulmonary vessel remodeling. Similarly, endothelial HIF-deficient mice were protected from PH after a 4-wk exposure to normobaric hypoxia. In vitro studies of pulmonary vascular endothelial cells isolated from the HIF-targeted mice and controls revealed that endothelial HIF signaling increases endothelial cell expression of connective tissue growth factor, enhances vascular permeability, and promotes pulmonary artery smooth muscle cell proliferation and wound healing ability, all of which have the potential to impact the development of PH in vivo. Taken together, these studies demonstrate that vascular endothelial cell HIF signaling is necessary for development of hypoxia and pulmonary fibrosis associated PH. As such, HIF and HIF-regulated targets represent a therapeutic target in these conditions.


Asunto(s)
Células Endoteliales/metabolismo , Hipertensión Pulmonar/metabolismo , Factor 1 Inducible por Hipoxia/metabolismo , Arteria Pulmonar/metabolismo , Animales , Proliferación Celular/fisiología , Células Cultivadas , Endotelio Vascular/metabolismo , Fibrosis/etiología , Hipertensión Pulmonar/complicaciones , Hipoxia/metabolismo , Ratones Transgénicos , Músculo Liso Vascular/metabolismo , Remodelación Vascular/fisiología
8.
Am J Respir Crit Care Med ; 191(4): 417-26, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25389906

RESUMEN

RATIONALE: Asymptomatic relatives of patients with familial interstitial pneumonia (FIP), the inherited form of idiopathic interstitial pneumonia, carry increased risk for developing interstitial lung disease. OBJECTIVES: Studying these at-risk individuals provides a unique opportunity to investigate early stages of FIP pathogenesis and develop predictive models of disease onset. METHODS: Seventy-five asymptomatic first-degree relatives of FIP patients (mean age, 50.8 yr) underwent blood sampling and high-resolution chest computed tomography (HRCT) scanning in an ongoing cohort study; 72 consented to bronchoscopy with bronchoalveolar lavage (BAL) and transbronchial biopsies. Twenty-seven healthy individuals were used as control subjects. MEASUREMENTS AND MAIN RESULTS: Eleven of 75 at-risk subjects (14%) had evidence of interstitial changes by HRCT, whereas 35.2% had abnormalities on transbronchial biopsies. No differences were noted in inflammatory cells in BAL between at-risk individuals and control subjects. At-risk subjects had increased herpesvirus DNA in cell-free BAL and evidence of herpesvirus antigen expression in alveolar epithelial cells (AECs), which correlated with expression of endoplasmic reticulum stress markers in AECs. Peripheral blood mononuclear cell and AEC telomere length were shorter in at-risk individuals than healthy control subjects. The minor allele frequency of the Muc5B rs35705950 promoter polymorphism was increased in at-risk subjects. Levels of several plasma biomarkers differed between at-risk subjects and control subjects, and correlated with abnormal HRCT scans. CONCLUSIONS: Evidence of lung parenchymal remodeling and epithelial dysfunction was identified in asymptomatic individuals at risk for FIP. Together, these findings offer new insights into the early pathogenesis of idiopathic interstitial pneumonia and provide an ongoing opportunity to characterize presymptomatic abnormalities that predict progression to clinical disease.


Asunto(s)
Enfermedades Pulmonares Intersticiales/diagnóstico , Fenotipo , Adulto , Anciano , Enfermedades Asintomáticas , Biomarcadores/metabolismo , Biopsia , Lavado Broncoalveolar , Broncoscopía , Estudios de Casos y Controles , ADN Viral/análisis , Femenino , Frecuencia de los Genes , Marcadores Genéticos , Herpesviridae/genética , Herpesviridae/aislamiento & purificación , Humanos , Pulmón/diagnóstico por imagen , Pulmón/metabolismo , Pulmón/patología , Pulmón/virología , Enfermedades Pulmonares Intersticiales/genética , Enfermedades Pulmonares Intersticiales/metabolismo , Enfermedades Pulmonares Intersticiales/virología , Masculino , Persona de Mediana Edad , Mucina 5B/genética , Polimorfismo Genético , Estudios Prospectivos , Tomografía Computarizada por Rayos X
9.
Am J Respir Cell Mol Biol ; 53(1): 50-9, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25375039

RESUMEN

Characterization of markers that identify activated macrophages could advance understanding of inflammatory lung diseases and facilitate development of novel methodologies for monitoring disease activity. We investigated whether folate receptor ß (FRß) expression could be used to identify and quantify activated macrophages in the lungs during acute inflammation induced by Escherichia coli LPS. We found that FRß expression was markedly increased in lung macrophages at 48 hours after intratracheal LPS. In vivo molecular imaging with a fluorescent probe (cyanine 5 polyethylene glycol folate) showed that the fluorescence signal over the chest peaked at 48 hours after intratracheal LPS and was markedly attenuated after depletion of macrophages. Using flow cytometry, we identified the cells responsible for uptake of cyanine 5-conjugated folate as FRß(+) interstitial macrophages and pulmonary monocytes, which coexpressed markers associated with an M1 proinflammatory macrophage phenotype. These findings were confirmed using a second model of acute lung inflammation generated by inducible transgenic expression of an NF-κB activator in airway epithelium. Using CC chemokine receptor 2-deficient mice, we found that FRß(+) macrophage/monocyte recruitment was dependent on the monocyte chemotactic protein-1/CC chemokine receptor 2 pathway. Together, our results demonstrate that folate-based molecular imaging can be used as a noninvasive approach to detect classically activated monocytes/macrophages recruited to the lungs during acute inflammation.


Asunto(s)
Receptor 2 de Folato/metabolismo , Regulación de la Expresión Génica , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patología , Imagen Molecular , Neumonía/metabolismo , Enfermedad Aguda , Animales , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Escherichia coli/química , Colorantes Fluorescentes/farmacología , Receptor 2 de Folato/genética , Lipopolisacáridos/química , Lipopolisacáridos/toxicidad , Ratones , Ratones Noqueados , Neumonía/inducido químicamente , Neumonía/genética , Neumonía/patología , Receptores CCR2/genética , Receptores CCR2/metabolismo
10.
BMC Cancer ; 15: 647, 2015 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-26424146

RESUMEN

BACKGROUND: Approximately 1 in 5 women diagnosed with breast cancer are considered to have in situ disease, most often termed ductal carcinoma in situ (DCIS). Though recognized as a risk factor for the development of more invasive cancer, it remains unclear what factors contribute to DCIS development. It has been shown that inflammation contributes to the progression of a variety of tumor types, and nuclear factor kappa B (NF-κB) is recognized as a master-regulator of inflammatory signaling. However, the contributions of NF-κB signaling to tumor initiation are less well understood. Aberrant up-regulation of NF-κB activity, either systemically or locally within the breast, could occur due to a variety of commonly experienced stimuli such as acute infection, obesity, or psychological stress. In this study, we seek to determine if activation of NF-κB in mammary epithelium could play a role in the formation of hyperplastic ductal lesions. METHODS: Our studies utilize a doxycycline-inducible transgenic mouse model in which constitutively active IKKß is expressed specifically in mammary epithelium. All previously published models of NF-κB modulation in the virgin mammary gland have been constitutive models, with transgene or knock-out present throughout the life and development of the animal. For the first time, we will induce activation at later time points after normal ducts have formed, thus being able to determine if NF-κB activation can promote pre-malignant changes in previously normal mammary epithelium. RESULTS: We found that even a short pulse of NF-κB activation could induce profound remodeling of mammary ductal structures. Short-term activation created hyperproliferative, enlarged ducts with filled lumens. Increased expression of inflammatory markers was concurrent with the down-regulation of hormone receptors and markers of epithelial differentiation. Furthermore, the oncoprotein mucin 1, known to be up-regulated in human and mouse DCIS, was over-expressed and mislocalized in the activated ductal tissue. CONCLUSIONS: These results indicate that aberrant NF-κB activation within mammary epithelium can lead to molecular and morphological changes consistent with the earliest stages of breast cancer. Thus, inhibition of NF-κB signaling following acute inflammation or the initial signs of hyperplastic ductal growth could represent an important opportunity for breast cancer prevention.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Carcinoma in Situ/metabolismo , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/patología , FN-kappa B/metabolismo , Transducción de Señal , Animales , Biomarcadores , Neoplasias de la Mama/genética , Carcinoma in Situ/genética , Carcinoma Ductal de Mama/genética , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Modelos Animales de Enfermedad , Activación Enzimática , Epitelio/metabolismo , Epitelio/patología , Femenino , Expresión Génica , Humanos , Hiperplasia , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , Mediadores de Inflamación/metabolismo , Ratones , Ratones Transgénicos , FN-kappa B/genética , Clasificación del Tumor , Especificidad de Órganos/genética
11.
J Immunol ; 190(9): 4786-94, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23530143

RESUMEN

Although reactive oxygen species (ROS) produced by NADPH oxidase are known to regulate inflammatory responses, the impact of ROS on intracellular signaling pathways is incompletely understood. In these studies, we treated wild-type (WT) and p47(phox)-deficient mice with LPS to investigate mechanisms by which NADPH oxidase regulates signaling through the NF-κB pathway. After intratracheal instillation of LPS, ROS generation was impaired in p47(phox)(-/-) mice, whereas these mice had increased neutrophilic alveolitis and greater lung injury compared with WT controls. In mice interbred with transgenic NF-κB reporters (HIV-long terminal repeat/luciferase [HLL]), we found exaggerated LPS-induced NF-κB activation and increased expression of proinflammatory cytokines in lungs of p47(phox)(-/-)/HLL mice compared with controls. Both lung macrophages and bone marrow-derived macrophages (BMDMs) isolated from p47(phox)(-/-)/HLL mice showed enhanced LPS-stimulated NF-κB activity compared with controls. Although nuclear translocation of NF-κB proteins was similar between genotypes, EMSAs under nonreducing conditions showed increased DNA binding in p47(phox)(-/-)/HLL BMDMs, suggesting that ROS production reduces NF-κB binding to DNA without affecting nuclear translocation. Increased intracellular reduced glutathione/glutathione disulfide ratio and greater nuclear redox factor 1 (Ref-1) levels were present in p47(phox)(-/-)/HLL compared with WT BMDMs, pointing to NADPH oxidase modulating intracellular redox status in macrophages. Treatment with the Ref-1-specific inhibitor E3330 or hydrogen peroxide inhibited LPS-induced NF-κB activation in p47(phox)(-/-)/HLL BMDMs but not in WT/HLL cells. Consistent with these findings, small interfering RNA against Ref-1 selectively reduced NF-κB activity in LPS-treated p47(phox)(-/-)/HLL BMDMs. Together, these results indicate that NADPH oxidase limits LPS-induced NF-κB transcriptional activity through regulation of intracellular redox state.


Asunto(s)
Lipopolisacáridos/inmunología , Lesión Pulmonar/metabolismo , NADPH Oxidasas/metabolismo , FN-kappa B/metabolismo , Neumonía/metabolismo , Animales , ADN-(Sitio Apurínico o Apirimidínico) Liasa/inmunología , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Lipopolisacáridos/farmacología , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/metabolismo , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/inmunología , Ratones , NADPH Oxidasas/inmunología , FN-kappa B/inmunología , Neutrófilos/inmunología , Neutrófilos/metabolismo , Oxidación-Reducción , Neumonía/inducido químicamente , Neumonía/inmunología , Especies Reactivas de Oxígeno/inmunología , Especies Reactivas de Oxígeno/metabolismo
12.
Am J Respir Crit Care Med ; 189(3): 325-34, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24274756

RESUMEN

RATIONALE: Shorter survival in heritable pulmonary arterial hypertension (HPAH), often due to BMPR2 mutation, has been described in association with impaired right ventricle (RV) compensation. HPAH animal models are insulin resistant, and cells with BMPR2 mutation have impaired fatty acid oxidation, but whether these findings affect the RV in HPAH is unknown. OBJECTIVES: To test the hypothesis that BMPR2 mutation impairs RV hypertrophic responses in association with lipid deposition. METHODS: RV hypertrophy was assessed in two models of mutant Bmpr2 expression, smooth muscle-specific (Sm22(R899X)) and universal expression (Rosa26(R899X)). Littermate control mice underwent the same stress using pulmonary artery banding (Low-PAB). Lipid content was assessed in rodent and human HPAH RVs and in Rosa26(R899X) mice after metformin administration. RV microarrays were performed using human HPAH and control subjects. RESULTS: RV/(left ventricle + septum) did not rise directly in proportion to RV systolic pressure in Rosa26(R899X) but did in Sm22(R899X) (P < 0.05). Rosa26(R899X) RVs demonstrated intracardiomyocyte triglyceride deposition not present in Low-PAB (P < 0.05). RV lipid deposition was identified in human HPAH RVs but not in controls. Microarray analysis demonstrated defects in fatty acid oxidation in human HPAH RVs. Metformin in Rosa26(R899X) mice resulted in reduced RV lipid deposition. CONCLUSIONS: These data demonstrate that Bmpr2 mutation affects RV stress responses in a transgenic rodent model. Impaired RV hypertrophy and triglyceride and ceramide deposition are present as a function of RV mutant Bmpr2 in mice; fatty acid oxidation impairment in human HPAH RVs may underlie this finding. Further study of how BMPR2 mediates RV lipotoxicity is warranted.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Ceramidas/metabolismo , Hipertensión Pulmonar/genética , Hipertrofia Ventricular Derecha/metabolismo , Lipólisis , Triglicéridos/metabolismo , Animales , Biomarcadores/metabolismo , Estudios de Casos y Controles , Hipertensión Pulmonar Primaria Familiar , Marcadores Genéticos , Humanos , Hipertensión Pulmonar/complicaciones , Hipertrofia Ventricular Derecha/etiología , Hipertrofia Ventricular Derecha/genética , Ratones , Ratones Transgénicos , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Oxidación-Reducción
13.
Am J Respir Crit Care Med ; 187(6): 630-9, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23306543

RESUMEN

RATIONALE: Alveolar epithelial cells (AECs) play central roles in the response to lung injury and the pathogenesis of pulmonary fibrosis. OBJECTIVES: We aimed to determine the role of ß-catenin in alveolar epithelium during bleomycin-induced lung fibrosis. METHODS: Genetically modified mice were developed to selectively delete ß-catenin in AECs and were crossed to cell fate reporter mice that express ß-galactosidase (ßgal) in cells of AEC lineage. Mice were given intratracheal bleomycin (0.04 units) and assessed for AEC death, inflammation, lung injury, and fibrotic remodeling. Mouse lung epithelial cells (MLE12) with small interfering RNA knockdown of ß-catenin underwent evaluation for wound closure, proliferation, and bleomycin-induced cytotoxicity. MEASUREMENTS AND MAIN RESULTS: Increased ß-catenin expression was noted in lung parenchyma after bleomycin. Mice with selective deletion of ß-catenin in AECs had greater AEC death at 1 week after bleomycin, followed by increased numbers of fibroblasts and enhanced lung fibrosis as determined by semiquantitative histological scoring and total collagen content. However, no differences in lung inflammation or protein levels in bronchoalveolar lavage were noted. In vitro, ß-catenin-deficient AECs showed increased bleomycin-induced cytotoxicity as well as reduced proliferation and impaired wound closure. Consistent with these findings, mice with AEC ß-catenin deficiency showed delayed recovery after bleomycin. CONCLUSIONS: ß-Catenin in the alveolar epithelium protects against bleomycin-induced fibrosis. Our studies suggest that AEC survival and wound healing are enhanced through ß-catenin-dependent mechanisms. Activation of the developmentally important ß-catenin pathway in AECs appears to contribute to epithelial repair after epithelial injury.


Asunto(s)
Lesión Pulmonar/patología , Alveolos Pulmonares/fisiología , Fibrosis Pulmonar/patología , beta Catenina/fisiología , Animales , Bleomicina/efectos adversos , Modelos Animales de Enfermedad , Epitelio , Etiquetado Corte-Fin in Situ , Lesión Pulmonar/inducido químicamente , Ratones , Ratones Transgénicos , Fibrosis Pulmonar/inducido químicamente , Cicatrización de Heridas/fisiología
14.
Eur Respir J ; 41(4): 861-71, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22936709

RESUMEN

Patients with pulmonary arterial hypertension have increased prevalence of insulin resistance. We aimed to determine whether metabolic defects are associated with bone morphogenic protein receptor type 2 (Bmpr2) mutations in mice, and whether these may contribute to pulmonary vascular disease development. Metabolic phenotyping was performed on transgenic mice with inducible expression of Bmpr2 mutation, R899X. Phenotypic penetrance in Bmpr2(R899X) was assessed in a high-fat diet model of insulin resistance. Alterations in glucocorticoid responses were assessed in murine pulmonary microvascular endothelial cells and Bmpr2(R899X) mice treated with dexamethasone. Compared to controls, Bmpr2(R899X) mice showed increased weight gain and demonstrated insulin resistance as assessed by the homeostatic model assessment insulin resistance (1.0 ± 0.4 versus 2.2 ± 1.8) and by fat accumulation in skeletal muscle and decreased oxygen consumption. Bmpr2(R899X) mice fed a high-fat diet had strong increases in pulmonary hypertension penetrance (seven out of 11 versus three out of 11). In cell culture and in vivo experiments, Bmpr2 mutation resulted in a combination of constitutive glucocorticoid receptor activation and insensitivity. Insulin resistance is present as an early feature of Bmpr2 mutation in mice. Exacerbated insulin resistance through high-fat diet worsened pulmonary phenotype, implying a possible causal role in disease. Impaired glucocorticoid responses may contribute to metabolic defects.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Hipertensión Pulmonar/tratamiento farmacológico , Resistencia a la Insulina , Animales , Composición Corporal , Línea Celular , Dexametasona/farmacología , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Metabolismo Energético , Humanos , Hipertensión Pulmonar/metabolismo , Masculino , Ratones , Ratones Transgénicos , Mutación , Fenotipo , Transporte de Proteínas , Ratas , Receptores de Glucocorticoides/metabolismo
15.
J Immunol ; 187(11): 5703-11, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22048774

RESUMEN

Macrophages have established roles in tumor growth and metastasis, but information about their role in lung tumor promotion is limited. To assess the role of macrophages in lung tumorigenesis, we developed a method of minimally invasive, long-term macrophage depletion by repetitive intratracheal instillation of liposomal clodronate. Compared with controls treated with repetitive doses of PBS-containing liposomes, long-term macrophage depletion resulted in a marked reduction in tumor number and size at 4 mo after a single i.p. injection of the carcinogen urethane. After urethane treatment, lung macrophages developed increased M1 macrophage marker expression during the first 2-3 wk, followed by increased M2 marker expression by week 6. Using a strategy to reduce alveolar macrophages during tumor initiation and early promotion stages (weeks 1-2) or during late promotion and progression stages (weeks 4-16), we found significantly fewer and smaller lung tumors in both groups compared with controls. Late-stage macrophage depletion reduced VEGF expression and impaired vascular growth in tumors. In contrast, early-stage depletion of alveolar macrophages impaired urethane-induced NF-κB activation in the lungs and reduced the development of premalignant atypical adenomatous hyperplasia lesions at 6 wk after urethane injection. Together, these studies elucidate an important role for macrophages in lung tumor promotion and indicate that these cells have distinct roles during different stages of lung carcinogenesis.


Asunto(s)
Carcinógenos/toxicidad , Transformación Celular Neoplásica/inmunología , Neoplasias Pulmonares/inmunología , Macrófagos/inmunología , Uretano/toxicidad , Animales , Separación Celular , Transformación Celular Neoplásica/inducido químicamente , Femenino , Citometría de Flujo , Inmunohistoquímica , Neoplasias Pulmonares/inducido químicamente , Masculino , Ratones , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
16.
Carcinogenesis ; 33(4): 859-67, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22287559

RESUMEN

Since recent evidence indicates a requirement for epithelial nuclear factor (NF)-κB signaling in lung tumorigenesis, we investigated the impact of the NF-κB inhibitor bortezomib on lung tumor promotion and growth. We used an experimental model in which wild-type mice or mice expressing an NF-κB reporter received intraperitoneal urethane (1 g/kg) followed by twice weekly bortezomib (1 mg/kg) during distinct periods of tumor initiation/progression. Mice were serially assessed for lung NF-κB activation, inflammation and carcinogenesis. Short-term proteasome inhibition with bortezomib did not impact tumor formation but retarded the growth of established lung tumors in mice via effects on cell proliferation. In contrast, long-term treatment with bortezomib resulted in significantly increased lung tumor number and size. This tumor-promoting effect of prolonged bortezomib treatment was associated with perpetuation of urethane-induced inflammation and chronic upregulation of interleukin-1ß and proinflammatory C-X-C motif chemokine ligands (CXCL) 1 and 2 in the lungs. In addition to airway epithelium, bortezomib inhibited NF-κB in pulmonary macrophages in vivo, presenting a possible mechanism of tumor amplification. In this regard, RAW264.7 macrophages exposed to bortezomib showed increased expression of interleukin-1ß, CXCL1 and CXCL2. In conclusion, although short-term bortezomib may exert some beneficial effects, prolonged NF-κB inhibition accelerates chemical lung carcinogenesis by perpetuating carcinogen-induced inflammation. Inhibition of NF-κB in pulmonary macrophages appears to play an important role in this adverse process.


Asunto(s)
Antineoplásicos/farmacología , Ácidos Borónicos/farmacología , Neoplasias Pulmonares/patología , FN-kappa B/antagonistas & inhibidores , Pirazinas/farmacología , Animales , Bortezomib , Línea Celular , Línea Celular Tumoral , Humanos , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/metabolismo , Ratones , Ratones Endogámicos BALB C
17.
Exp Lung Res ; 38(3): 124-34, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22394286

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is characterized by interstitial lung infiltrates, dyspnea, and progressive respiratory failure. Reports linking telomerase mutations to familial interstitial pneumonia (FIP) suggest that telomerase activity and telomere length maintenance are important in disease pathogenesis. To investigate the role of telomerase in lung fibrotic remodeling, intratracheal bleomycin was administered to mice deficient in telomerase reverse transcriptase (TERT) or telomerase RNA component (TERC) and to wild-type controls. TERT-deficient and TERC-deficient mice were interbred to the F6 and F4 generation, respectively, when they developed skin manifestations and infertility. Fibrosis was scored using a semiquantitative scale and total lung collagen was measured using a hydroxyprolinemicroplate assay. Telomere lengths were measured in peripheral blood leukocytes and isolated type II alveolar epithelial cells (AECs). Telomerase activity in type II AECs was measured using a real-time polymerase chain reaction (PCR)-based system. Following bleomycin, TERT-deficient and TERC-deficient mice developed an equivalent inflammatory response and similar lung fibrosis (by scoring of lung sections and total lung collagen content) compared to controls, a pattern seen in both early (F1) and later (F6 TERT and F4 TERC) generations. Telomere lengths were reduced in peripheral blood leukocytes and isolated type II AECs from F6 TERT-deficient and F4 TERC-deficient mice compared to controls. Telomerase deficiency in a murine model leads to telomere shortening, but does not predispose to enhanced bleomycin-induced lung fibrosis. Additional genetic or environmental factors may be necessary for development of fibrosis in the presence of telomerase deficiency.


Asunto(s)
Bleomicina/toxicidad , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/enzimología , Telomerasa/deficiencia , Homeostasis del Telómero/efectos de los fármacos , Remodelación de las Vías Aéreas (Respiratorias)/efectos de los fármacos , Remodelación de las Vías Aéreas (Respiratorias)/genética , Animales , Antibióticos Antineoplásicos/toxicidad , Colágeno/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Femenino , Fibrosis Pulmonar Idiopática/genética , Leucocitos/efectos de los fármacos , Leucocitos/metabolismo , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación/genética , Neumonía/inducido químicamente , Neumonía/genética , Neumonía/metabolismo , Alveolos Pulmonares/efectos de los fármacos , Alveolos Pulmonares/metabolismo , ARN/genética , Telomerasa/genética , Telomerasa/metabolismo , Homeostasis del Telómero/genética , Acortamiento del Telómero/efectos de los fármacos , Acortamiento del Telómero/genética
18.
Circulation ; 122(12): 1200-9, 2010 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-20823384

RESUMEN

BACKGROUND: Elevated levels of plasminogen activator inhibitor-1 (PAI-1), a potent inhibitor of urokinase plasminogen activator and tissue plasminogen activator, are implicated in the pathogenesis of tissue fibrosis. Paradoxically, lack of PAI-1 in the heart is associated with the development of cardiac fibrosis in aged mice. However, the molecular basis of cardiac fibrosis in aged PAI-1-deficient mice is unknown. Here, we investigated the molecular and cellular bases of myocardial fibrosis. METHODS AND RESULTS: Histological evaluation of myocardial tissues derived from aged PAI-1-deficient mice revealed myocardial fibrosis resulting from excessive accumulation of collagen. Immunohistochemical characterization revealed that the levels of matrix metalloproteinase-2, matrix metalloproteinase-9, and transforming growth factor-ß1/2 and the number of Mac3-positive and fibroblast specific protein-1-positive cells were significantly elevated in aged PAI-1-deficient myocardial tissues compared with controls. Zymographic analysis revealed that matrix metalloproteinase-2 enzymatic activity was elevated in PAI-1-deficient mouse cardiac endothelial cells. Real-time quantitative polymerase chain reaction analyses of RNA from myocardial tissues revealed the upregulation of profibrotic markers in aged PAI-1-deficient mice. The numbers of phosphorylated Smad2-, phosphorylated Smad3-, and phosphorylated ERK1/2 MAPK-, but not pAkt/PKB-, positive cells were significantly increased in PAI-1-deficient myocardial tissues. Western blot and immunocytochemical analysis revealed that PAI-1-deficient mouse cardiac endothelial cells were more susceptible to endothelial-to-mesenchymal transition in response to transforming growth factor-ß2. CONCLUSIONS: These results indicate that spontaneous activation of both Smad and non-Smad transforming growth factor-ß signaling may contribute to profibrotic responses in aged PAI-1-deficient mice hearts and establish a possible link between endothelial-to-mesenchymal transition and cardiac fibrosis in PAI-1-deficient mice.


Asunto(s)
Envejecimiento/patología , Endotelio Vascular/patología , Cardiopatías/genética , Cardiopatías/patología , Mesodermo/patología , Serpinas/genética , Factor de Crecimiento Transformador beta/metabolismo , Animales , Diferenciación Celular/fisiología , Colágeno/metabolismo , Modelos Animales de Enfermedad , Fibrosis/genética , Fibrosis/metabolismo , Fibrosis/patología , Cardiopatías/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/metabolismo , Miocardio/patología , Proteína de Unión al Calcio S100A4 , Proteínas S100/metabolismo , Serpina E2 , Serpinas/deficiencia , Serpinas/metabolismo , Transducción de Señal/fisiología
19.
Am J Physiol Lung Cell Mol Physiol ; 300(6): L887-97, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21441353

RESUMEN

The response of alveolar epithelial cells (AECs) to lung injury plays a central role in the pathogenesis of pulmonary fibrosis, but the mechanisms by which AECs regulate fibrotic processes are not well defined. We aimed to elucidate how transforming growth factor-ß (TGFß) signaling in lung epithelium impacts lung fibrosis in the intratracheal bleomycin model. Mice with selective deficiency of TGFß receptor 2 (TGFßR2) in lung epithelium were generated and crossed to cell fate reporter mice that express ß-galactosidase (ß-gal) in cells of lung epithelial lineage. Mice were given intratracheal bleomycin (0.08 U), and the following parameters were assessed: AEC death by terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling assay, inflammation by total and differential cell counts from bronchoalveolar lavage, fibrosis by scoring of trichrome-stained lung sections, and total lung collagen content. Mice with lung epithelial deficiency of TGFßR2 had improved AEC survival, despite greater lung inflammation, after bleomycin administration. At 3 wk after bleomycin administration, mice with epithelial TGFßR2 deficiency showed a significantly attenuated fibrotic response in the lungs, as determined by semiquantitatve scoring and total collagen content. The reduction in lung fibrosis in these mice was associated with a marked decrease in the lung fibroblast population, both total lung fibroblasts and epithelial-to-mesenchymal transition-derived (S100A4(+)/ß-gal(+)) fibroblasts. Attenuation of TGFß signaling in lung epithelium provides protection from bleomycin-induced fibrosis, indicating a critical role for the epithelium in transducing the profibrotic effects of this cytokine.


Asunto(s)
Bleomicina/efectos adversos , Epitelio/metabolismo , Fibroblastos/metabolismo , Lesión Pulmonar/inducido químicamente , Proteínas Serina-Treonina Quinasas/fisiología , Alveolos Pulmonares/efectos de los fármacos , Receptores de Factores de Crecimiento Transformadores beta/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Animales , Antibióticos Antineoplásicos/efectos adversos , Western Blotting , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Epitelio/efectos de los fármacos , Epitelio/patología , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Técnica del Anticuerpo Fluorescente , Lesión Pulmonar/metabolismo , Lesión Pulmonar/patología , Ratones , Ratones Transgénicos , Neumonía/inducido químicamente , Neumonía/metabolismo , Neumonía/patología , Alveolos Pulmonares/metabolismo , Alveolos Pulmonares/patología , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Receptor Tipo II de Factor de Crecimiento Transformador beta , Transducción de Señal , beta-Galactosidasa/metabolismo
20.
Am J Physiol Lung Cell Mol Physiol ; 299(4): L442-52, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20562227

RESUMEN

Single-dose intratracheal bleomycin has been instrumental for understanding fibrotic lung remodeling, but fails to recapitulate several features of idiopathic pulmonary fibrosis (IPF). Since IPF is thought to result from recurrent alveolar injury, we aimed to develop a repetitive bleomycin model that results in lung fibrosis with key characteristics of human disease, including alveolar epithelial cell (AEC) hyperplasia. Wild-type and cell fate reporter mice expressing ß-galactosidase in cells of lung epithelial lineage were given intratracheal bleomycin after intubation, and lungs were harvested 2 wk after a single or eighth biweekly dose. Lungs were evaluated for fibrosis and collagen content. Bronchoalveolar lavage (BAL) was performed for cell counts. TUNEL staining and immunohistochemistry were performed for pro-surfactant protein C (pro-SP-C), Clara cell 10 (CC-10), ß-galactosidase, S100A4, and α-smooth muscle actin. Lungs from repetitive bleomycin mice had marked fibrosis with prominent AEC hyperplasia, similar to usual interstitial pneumonia (UIP). Compared with single dosing, repetitive bleomycin mice had greater fibrosis by scoring, morphometry, and collagen content; increased TUNEL+ AECs; and reduced inflammatory cells in BAL. Sixty-four percent of pro-SP-C+ cells in areas of fibrosis expressed CC-10 in the repetitive model, suggesting expansion of a bronchoalveolar stem cell-like population. In reporter mice, 50% of S100A4+ lung fibroblasts were derived from epithelial mesenchymal transition compared with 33% in the single-dose model. With repetitive bleomycin, fibrotic remodeling persisted 10 wk after the eighth dose. Repetitive intratracheal bleomycin results in marked lung fibrosis with prominent AEC hyperplasia, features reminiscent of UIP.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Bleomicina/farmacología , Modelos Animales de Enfermedad , Células Epiteliales/efectos de los fármacos , Fibrosis Pulmonar Idiopática/inducido químicamente , Animales , Apoptosis , Líquido del Lavado Bronquioalveolar , Proliferación Celular , Células Cultivadas , Células Epiteliales/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Técnica del Anticuerpo Fluorescente , Humanos , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Técnicas para Inmunoenzimas , Etiquetado Corte-Fin in Situ , Integrasas , Intubación Intratraqueal , Mesodermo/efectos de los fármacos , Mesodermo/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , beta-Galactosidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA