Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Plant Physiol ; 173(3): 1543-1553, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28104718

RESUMEN

Proteomic plasticity undergirds stress responses in plants, and understanding such responses requires accurate measurement of the extent to which proteins levels are adjusted to counter external stimuli. Here, we adapt bioorthogonal noncanonical amino acid tagging (BONCAT) to interrogate protein synthesis in vegetative Arabidopsis (Arabidopsis thaliana) seedlings. BONCAT relies on the translational incorporation of a noncanonical amino acid probe into cellular proteins. In this study, the probe is the Met surrogate azidohomoalanine (Aha), which carries a reactive azide moiety in its amino acid side chain. The azide handle in Aha can be selectively conjugated to dyes and functionalized beads to enable visualization and enrichment of newly synthesized proteins. We show that BONCAT is sensitive enough to detect Arabidopsis proteins synthesized within a 30-min interval defined by an Aha pulse and that the method can be used to detect proteins made under conditions of light stress, osmotic shock, salt stress, heat stress, and recovery from heat stress. We further establish that BONCAT can be coupled to tandem liquid chromatography-mass spectrometry to identify and quantify proteins synthesized during heat stress and recovery from heat stress. Our results are consistent with a model in which, upon the onset of heat stress, translation is rapidly reprogrammed to enhance the synthesis of stress mitigators and is again altered during recovery. All experiments were carried out with commercially available reagents, highlighting the accessibility of the BONCAT method to researchers interested in stress responses as well as translational and posttranslational regulation in plants.


Asunto(s)
Alanina/análogos & derivados , Proteínas de Arabidopsis/biosíntesis , Arabidopsis/metabolismo , Azidas/química , Colorantes/química , Biosíntesis de Proteínas , Alanina/química , Arabidopsis/efectos de los fármacos , Arabidopsis/efectos de la radiación , Cromatografía Liquida , Sequías , Calor , Immunoblotting , Luz , Reproducibilidad de los Resultados , Plantones/efectos de los fármacos , Plantones/metabolismo , Plantones/efectos de la radiación , Cloruro de Sodio/farmacología , Coloración y Etiquetado/métodos , Estrés Fisiológico , Espectrometría de Masas en Tándem , Factores de Tiempo
2.
Nature ; 492(7427): 138-42, 2012 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-23172143

RESUMEN

The iridoids comprise a large family of distinctive bicyclic monoterpenes that possess a wide range of pharmacological activities, including anticancer, anti-inflammatory, antifungal and antibacterial activities. Additionally, certain iridoids are used as sex pheromones in agriculturally important species of aphids, a fact that has underpinned innovative and integrated pest management strategies. To harness the biotechnological potential of this natural product class, the enzymes involved in the biosynthetic pathway must be elucidated. Here we report the discovery of iridoid synthase, a plant-derived enzyme that generates the iridoid ring scaffold, as evidenced by biochemical assays, gene silencing, co-expression analysis and localization studies. In contrast to all known monoterpene cyclases, which use geranyl diphosphate as substrate and invoke a cationic intermediate, iridoid synthase uses the linear monoterpene 10-oxogeranial as substrate and probably couples an initial NAD(P)H-dependent reduction step with a subsequent cyclization step via a Diels-Alder cycloaddition or a Michael addition. Our results illustrate how a short-chain reductase was recruited as cyclase for the production of iridoids in medicinal plants. Furthermore, we highlight the prospects of using unrelated reductases to generate artificial cyclic scaffolds. Beyond the recognition of an alternative biochemical mechanism for the biosynthesis of cyclic terpenes, we anticipate that our work will enable the large-scale heterologous production of iridoids in plants and microorganisms for agricultural and pharmaceutical applications.


Asunto(s)
Biocatálisis , Catharanthus/enzimología , Iridoides/química , Iridoides/metabolismo , Aspergillus fumigatus/enzimología , Aspergillus fumigatus/metabolismo , Productos Biológicos/química , Productos Biológicos/metabolismo , Catharanthus/genética , Catharanthus/metabolismo , Ciclización , Reacción de Cicloadición , Datos de Secuencia Molecular , Monoterpenos/metabolismo , NADP/metabolismo , Oxidorreductasas/metabolismo , Extractos Vegetales/química , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Plantas Medicinales/enzimología , Plantas Medicinales/genética , Plantas Medicinales/metabolismo , Especificidad por Sustrato
3.
J Am Chem Soc ; 133(48): 19346-9, 2011 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-22050348

RESUMEN

Installing halogens onto natural products can generate compounds with novel or improved properties. Notably, enzymatic halogenation is now possible as a result of the discovery of several classes of halogenases; however, applications are limited because of the narrow substrate specificity of these enzymes. Here we demonstrate that the flavin-dependent halogenase RebH can be engineered to install chlorine preferentially onto tryptamine rather than the native substrate tryptophan. Tryptamine is a direct precursor to many alkaloid natural products, including approximately 3000 monoterpene indole alkaloids. To validate the function of this engineered enzyme in vivo, we transformed the tryptamine-specific RebH mutant (Y455W) into the alkaloid-producing plant Madagascar periwinkle ( Catharanthus roseus ) and observed the de novo production of the halogenated alkaloid 12-chloro-19,20-dihydroakuammicine. While wild-type (WT) RebH has been integrated into periwinkle metabolism previously, the resulting tissue cultures accumulated substantial levels of 7-chlorotryptophan. Tryptophan decarboxylase, the enzyme that converts tryptophan to tryptamine, accepts 7-chlorotryptophan at only 3% of the efficiency of the native substrate tryptophan, thereby creating a bottleneck. The RebH Y455W mutant circumvents this bottleneck by installing chlorine onto tryptamine, a downstream substrate. In comparison with cultures harboring RebH and WT RebF, tissue cultures containing mutant RebH Y455W and RebF also accumulate microgram per gram fresh-weight quantities of 12-chloro-19,20-dihydroakuammicine but, in contrast, do not accumulate 7-chlorotryptophan, demonstrating the selectivity and potential utility of this mutant in metabolic engineering applications.


Asunto(s)
Alcaloides/metabolismo , Catharanthus/enzimología , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Ingeniería de Proteínas , Triptaminas/metabolismo , Triptófano/metabolismo , Catharanthus/genética , Catharanthus/metabolismo , Halogenación , Compuestos Heterocíclicos de 4 o más Anillos/metabolismo , Ingeniería Metabólica , Mutación , Triptófano/análogos & derivados
4.
Curr Opin Chem Biol ; 36: 50-57, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28088696

RESUMEN

Cells alter the proteome to respond to environmental and developmental cues. Global analysis of proteomic responses is of limited value in heterogeneous environments, where there is no 'average' cell. Advances in sequencing, protein labeling, mass spectrometry, and data analysis have fueled recent progress in the investigation of specific subpopulations of cells in complex systems. Here we highlight recently developed chemical tools that enable cell-selective proteomic analysis of complex biological systems, from bacterial pathogens to whole animals.


Asunto(s)
Biosíntesis de Proteínas , Proteoma/análisis , Proteómica/métodos , Animales , Bacterias/metabolismo , Línea Celular , Humanos , Espectrometría de Masas/métodos , Proteínas/análisis
5.
Curr Opin Biotechnol ; 24(2): 354-65, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22954587

RESUMEN

Plant alkaloids have a rich chemical ecology that has been exploited for medicinal purposes for thousands of years. Despite being highly represented within today's pharmacopoeia, relatively little is known about the biosynthesis, regulation and transport of these molecules. Understanding how nature synthesizes plant alkaloids will enhance our ability to overproduce--that is, to metabolically engineer--these medicinally useful compounds as well as new-to-nature compounds (with potentially improved bioactivity) derived from these natural scaffolds. Recent progress in the metabolic engineering of nitrogen-containing plant natural products--specifically the monoterpene indole alkaloids, the benzylisoquinoline alkaloids and the glucosinolates--was made possible through the characterization of various components in both native and engineered enzymatic pathways. The subsequent reconfiguration and tuning of these biological 'parts' has enabled the production of selected products at increasingly higher titers.


Asunto(s)
Alcaloides/metabolismo , Ingeniería Metabólica , Plantas/genética , Plantas/metabolismo , Alcaloides/biosíntesis , Alcaloides/química , Bencilisoquinolinas/química , Bencilisoquinolinas/metabolismo , Productos Biológicos/química , Productos Biológicos/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Glucosinolatos/química , Glucosinolatos/metabolismo , Alcaloides Indólicos/química , Alcaloides Indólicos/metabolismo , Monoterpenos/química , Monoterpenos/metabolismo
6.
Chem Biol ; 19(6): 674-8, 2012 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-22726681

RESUMEN

Opium poppy (Papaver somniferum) produces medicinally important benzylisoquinoline alkaloids, including the analgesics codeine and morphine, in the morphinan pathway. We aligned three dioxygenases that were recently discovered in P. somniferum and subsequently identified the nonconserved regions. Two of these enzymes, codeine O-demethylase (PsCODM) and thebaine O-demethylase (PsT6ODM), are known to facilitate regioselective O-demethylation in morphinan biosynthesis. We systematically swapped the residues that were nonconserved between the PsCODM and PsT6ODM sequences to generate 16 mutant PsCODM proteins that could be overexpressed in Escherichia coli. While wild-type PsCODM can demethylate both codeine and thebaine, one engineered PsCODM mutant selectively demethylates codeine. Use of this reengineered enzyme in the reconstitution of morphine biosynthesis could selectively disable a redundant pathway branch and therefore impact the yields of the downstream products codeine and morphine in subsequent metabolic engineering efforts.


Asunto(s)
Dioxigenasas/genética , Ingeniería Genética , Morfina/biosíntesis , Dioxigenasas/química , Dioxigenasas/metabolismo , Cinética , Modelos Moleculares , Estructura Molecular , Mutación , Papaver/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA