Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cell ; 147(6): 1295-308, 2011 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-22153074

RESUMEN

As nascent polypeptides exit ribosomes, they are engaged by a series of processing, targeting, and folding factors. Here, we present a selective ribosome profiling strategy that enables global monitoring of when these factors engage polypeptides in the complex cellular environment. Studies of the Escherichia coli chaperone trigger factor (TF) reveal that, though TF can interact with many polypeptides, ß-barrel outer-membrane proteins are the most prominent substrates. Loss of TF leads to broad outer-membrane defects and premature, cotranslational protein translocation. Whereas in vitro studies suggested that TF is prebound to ribosomes waiting for polypeptides to emerge from the exit channel, we find that in vivo TF engages ribosomes only after ~100 amino acids are translated. Moreover, excess TF interferes with cotranslational removal of the N-terminal formyl methionine. Our studies support a triaging model in which proper protein biogenesis relies on the fine-tuned, sequential engagement of processing, targeting, and folding factors.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Isomerasa de Peptidilprolil/metabolismo , Ribosomas/metabolismo , Citoplasma/química , Escherichia coli/citología , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Datos de Secuencia Molecular , Biosíntesis de Proteínas , Transporte de Proteínas
2.
Nature ; 536(7615): 219-23, 2016 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-27487212

RESUMEN

Signal recognition particle (SRP) is a universally conserved protein-RNA complex that mediates co-translational protein translocation and membrane insertion by targeting translating ribosomes to membrane translocons. The existence of parallel co- and post-translational transport pathways, however, raises the question of the cellular substrate pool of SRP and the molecular basis of substrate selection. Here we determine the binding sites of bacterial SRP within the nascent proteome of Escherichia coli at amino acid resolution, by sequencing messenger RNA footprints of ribosome-nascent-chain complexes associated with SRP. SRP, on the basis of its strong preference for hydrophobic transmembrane domains (TMDs), constitutes a compartment-specific targeting factor for nascent inner membrane proteins (IMPs) that efficiently excludes signal-sequence-containing precursors of periplasmic and outer membrane proteins. SRP associates with hydrophobic TMDs enriched in consecutive stretches of hydrophobic and bulky aromatic amino acids immediately on their emergence from the ribosomal exit tunnel. By contrast with current models, N-terminal TMDs are frequently skipped and TMDs internal to the polypeptide sequence are selectively recognized. Furthermore, SRP binds several TMDs in many multi-spanning membrane proteins, suggesting cycles of SRP-mediated membrane targeting. SRP-mediated targeting is not accompanied by a transient slowdown of translation and is not influenced by the ribosome-associated chaperone trigger factor (TF), which has a distinct substrate pool and acts at different stages during translation. Overall, our proteome-wide data set of SRP-binding sites reveals the underlying principles of pathway decisions for nascent chains in bacteria, with SRP acting as the dominant triaging factor, sufficient to separate IMPs from substrates of the SecA-SecB post-translational translocation and TF-assisted cytosolic protein folding pathways.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Péptidos/metabolismo , Biosíntesis de Proteínas , Proteoma/metabolismo , Partícula de Reconocimiento de Señal/metabolismo , Sitios de Unión , Escherichia coli/genética , Proteínas de Escherichia coli/biosíntesis , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de la Membrana/biosíntesis , Isomerasa de Peptidilprolil/metabolismo , Periplasma/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteoma/biosíntesis , Proteómica , ARN Bacteriano/metabolismo , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Especificidad por Sustrato
3.
J Biol Chem ; 291(7): 3483-95, 2016 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-26635369

RESUMEN

TnrA is a master regulator of nitrogen assimilation in Bacillus subtilis. This study focuses on the mechanism of how glutamine synthetase (GS) inhibits TnrA function in response to key metabolites ATP, AMP, glutamine, and glutamate. We suggest a model of two mutually exclusive GS conformations governing the interaction with TnrA. In the ATP-bound state (A-state), GS is catalytically active but unable to interact with TnrA. This conformation was stabilized by phosphorylated L-methionine sulfoximine (MSX), fixing the enzyme in the transition state. When occupied by glutamine (or its analogue MSX), GS resides in a conformation that has high affinity for TnrA (Q-state). The A- and Q-state are mutually exclusive, and in agreement, ATP and glutamine bind to GS in a competitive manner. At elevated concentrations of glutamine, ATP is no longer able to bind GS and to bring it into the A-state. AMP efficiently competes with ATP and prevents formation of the A-state, thereby favoring GS-TnrA interaction. Surface plasmon resonance analysis shows that TnrA bound to a positively regulated promoter fragment binds GS in the Q-state, whereas it rapidly dissociates from a negatively regulated promoter fragment. These data imply that GS controls TnrA activity at positively controlled promoters by shielding the transcription factor in the DNA-bound state. According to size exclusion and multiangle light scattering analysis, the dodecameric GS can bind three TnrA dimers. The highly interdependent ligand binding properties of GS reveal this enzyme as a sophisticated sensor of the nitrogen and energy state of the cell to control the activity of DNA-bound TnrA.


Asunto(s)
Adenosina Trifosfato/metabolismo , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Glutamato-Amoníaco Ligasa/metabolismo , Glutamina/metabolismo , Modelos Moleculares , Regiones Promotoras Genéticas , Proteínas Represoras/metabolismo , Adenosina Monofosfato/química , Adenosina Monofosfato/metabolismo , Adenosina Trifosfato/química , Bacillus subtilis/enzimología , Proteínas Bacterianas/agonistas , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Unión Competitiva , Estabilidad de Enzimas , Eliminación de Gen , Glutamato-Amoníaco Ligasa/química , Glutamato-Amoníaco Ligasa/genética , Ácido Glutámico/química , Ácido Glutámico/metabolismo , Glutamina/química , Cinética , Ligandos , Metionina Sulfoximina/análogos & derivados , Metionina Sulfoximina/química , Metionina Sulfoximina/metabolismo , Peso Molecular , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Represoras/agonistas , Proteínas Represoras/química , Proteínas Represoras/genética , Resonancia por Plasmón de Superficie
4.
Cell Chem Biol ; 26(8): 1169-1179.e4, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31204287

RESUMEN

ATP-driven bacterial AAA+ proteases have been recognized as drug targets. They possess an AAA+ protein (e.g., ClpC), which threads substrate proteins into an associated peptidase (e.g., ClpP). ATPase activity and substrate selection of AAA+ proteins are regulated by adapter proteins that bind to regulatory domains, such as the N-terminal domain (NTD). The antibacterial peptide Cyclomarin A (CymA) kills Mycobacterium tuberculosis cells by binding to the NTD of ClpC. How CymA affects ClpC function is unknown. Here, we reveal the mechanism of CymA-induced toxicity. We engineered a CymA-sensitized ClpC chimera and show that CymA activates ATPase and proteolytic activities. CymA mimics adapter binding and enables autonomous protein degradation by ClpC/ClpP with relaxed substrate selectivity. We reconstitute CymA toxicity in E. coli cells expressing engineered ClpC and ClpP, demonstrating that gain of uncontrolled proteolytic activity causes cell death. This validates drug-induced overriding of AAA+ protease activity control as effective antibacterial strategy.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/antagonistas & inhibidores , Antibacterianos/farmacología , Escherichia coli/química , Oligopéptidos/farmacología , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Escherichia coli/citología , Modelos Moleculares , Conformación Molecular , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/enzimología , Oligopéptidos/química , Oligopéptidos/aislamiento & purificación
5.
Elife ; 62017 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-29165246

RESUMEN

Ring-forming AAA+ chaperones exert ATP-fueled substrate unfolding by threading through a central pore. This activity is potentially harmful requiring mechanisms for tight repression and substrate-specific activation. The AAA+ chaperone ClpC with the peptidase ClpP forms a bacterial protease essential to virulence and stress resistance. The adaptor MecA activates ClpC by targeting substrates and stimulating ClpC ATPase activity. We show how ClpC is repressed in its ground state by determining ClpC cryo-EM structures with and without MecA. ClpC forms large two-helical assemblies that associate via head-to-head contacts between coiled-coil middle domains (MDs). MecA converts this resting state to an active planar ring structure by binding to MD interaction sites. Loss of ClpC repression in MD mutants causes constitutive activation and severe cellular toxicity. These findings unravel an unexpected regulatory concept executed by coiled-coil MDs to tightly control AAA+ chaperone activity.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Proteínas de Unión a las Penicilinas/química , Proteínas de Unión a las Penicilinas/metabolismo , Multimerización de Proteína , Microscopía por Crioelectrón , Conformación Proteica , Staphylococcus aureus/enzimología
6.
Curr Opin Struct Biol ; 24: 24-33, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24721450

RESUMEN

Protein biogenesis integrates multiple finely regulated mechanisms, ensuring nascent polypeptide chains are correctly enzymatically processed, targeted to membranes and folded to native structure. Recent studies show that the cellular translation machinery serves as hub that coordinates the maturation events in space and time at various levels. The ribosome itself serves as docking site for a multitude of nascent chain-interacting factors. The movement of ribosomes along open reading frames is non-uniformous and includes pausing sites, which facilitates nascent chain folding and perhaps factor engagement. Here we summarize current knowledge and discuss emerging concepts underlying the critical interplay between translation and protein maturation in E. coli.


Asunto(s)
Biosíntesis de Proteínas , Pliegue de Proteína , Proteínas/química , Proteínas/metabolismo , Animales , Humanos , Modelos Moleculares , Conformación Proteica , Ribosomas/química , Ribosomas/metabolismo
7.
Nat Struct Mol Biol ; 20(7): 843-50, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23770820

RESUMEN

Newly synthesized polypeptides undergo various cotranslational maturation steps, including N-terminal enzymatic processing, chaperone-assisted folding and membrane targeting, but the spatial and temporal coordination of these steps is unclear. We show that Escherichia coli methionine aminopeptidase (MAP) associates with ribosomes through a charged loop that is crucial for nascent-chain processing and cell viability. MAP competes with peptide deformylase (PDF), the first enzyme to act on nascent chains, for binding sites at the ribosomal tunnel exit. PDF has extremely fast association and dissociation kinetics, which allows it to frequently sample ribosomes and ensure the processing of nascent chains after their emergence. Premature recruitment of the chaperone trigger factor, or polypeptide folding, negatively affect processing efficiency. Thus, the fast ribosome association kinetics of PDF and MAP are crucial for the temporal separation of nascent-chain processing from later maturation events, including chaperone recruitment and folding.


Asunto(s)
Amidohidrolasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Simulación del Acoplamiento Molecular , Pliegue de Proteína , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Secuencia de Aminoácidos , Secuencia Conservada , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Mapeo de Interacción de Proteínas , Alineación de Secuencia , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA