Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
NMR Biomed ; 37(1): e5032, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37654051

RESUMEN

Parallel transmit MRI at 7 T has increasingly been adopted in research projects and provides increased signal-to-noise ratios and novel contrasts. However, the interactions of fields in the body need to be carefully considered to ensure safe scanning. Recent advances in physically flexible body coils have allowed for high-field abdominal imaging, but the effects of increased variability on energy deposition need further exploration. The aim of this study was to assess the impact of subject geometry, respiration phase and coil positioning on the specific absorption rate (SAR). Ten healthy subjects (body mass index [BMI] = 25 ± 5 kg m-2 ) were scanned (at 3 T) during exhale breath-hold and images used to generate body models. Seven of these subjects were also scanned during inhale. Simplifications of the coil and body models were first explored, and then finite-difference time-domain simulations were run with a typical eight-channel parallel transmit coil positioned over the abdomen. Simulations were used to generate 10 g averaged SAR (SAR10g ) maps across 100,000 phase settings, and the worst-case scenario 10 g averaged SAR (wocSAR10g ) was identified using trigonometric maximisation. The average maximum SAR10g across the 10 subjects with 1 W input power per channel was 1.77 W kg-1 . Hotspots were always close to the body surface near the muscle wall boundary. The wocSAR10g across the 10 subjects ranged from 2.3 to 3.2 W kg-1 and was inversely correlated to fat volume percentage (R = 8) and BMI (R = 0.6). The coefficient of variation values in SAR10g due to variations in subject geometry, respiration phase and realistic coil repositioning were 12%, 4% and 12%, respectively. This study found that the variability due to realistic coil repositioning was similar to the variability due to differing healthy subject geometries for abdominal imaging. This is important as it suggests that population-based modelling is likely to be more useful than individual modelling in setting safe thresholds for abdominal imaging.


Asunto(s)
Imagen por Resonancia Magnética , Ondas de Radio , Humanos , Fantasmas de Imagen , Imagen por Resonancia Magnética/métodos , Abdomen/diagnóstico por imagen , Respiración
2.
Neuroimage ; 274: 120157, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37149237

RESUMEN

The ability to collect high-quality neuroimaging data during ambulatory participant movement would enable a wealth of neuroscientific paradigms. Wearable magnetoencephalography (MEG) based on optically pumped magnetometers (OPMs) has the potential to allow participant movement during a scan. However, the strict zero magnetic field requirement of OPMs means that systems must be operated inside a magnetically shielded room (MSR) and also require active shielding using electromagnetic coils to cancel residual fields and field changes (due to external sources and sensor movements) that would otherwise prevent accurate neuronal source reconstructions. Existing active shielding systems only compensate fields over small, fixed regions and do not allow ambulatory movement. Here we describe the matrix coil, a new type of active shielding system for OPM-MEG which is formed from 48 square unit coils arranged on two planes which can compensate magnetic fields in regions that can be flexibly placed between the planes. Through the integration of optical tracking with OPM data acquisition, field changes induced by participant movement are cancelled with low latency (25 ms). High-quality MEG source data were collected despite the presence of large (65 cm translations and 270° rotations) ambulatory participant movements.


Asunto(s)
Magnetoencefalografía , Dispositivos Electrónicos Vestibles , Humanos , Magnetoencefalografía/métodos , Movimiento , Campos Magnéticos , Fenómenos Electromagnéticos , Encéfalo/fisiología
3.
Sensors (Basel) ; 23(12)2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37420622

RESUMEN

The evolution of human cognitive function is reliant on complex social interactions which form the behavioural foundation of who we are. These social capacities are subject to dramatic change in disease and injury; yet their supporting neural substrates remain poorly understood. Hyperscanning employs functional neuroimaging to simultaneously assess brain activity in two individuals and offers the best means to understand the neural basis of social interaction. However, present technologies are limited, either by poor performance (low spatial/temporal precision) or an unnatural scanning environment (claustrophobic scanners, with interactions via video). Here, we describe hyperscanning using wearable magnetoencephalography (MEG) based on optically pumped magnetometers (OPMs). We demonstrate our approach by simultaneously measuring brain activity in two subjects undertaking two separate tasks-an interactive touching task and a ball game. Despite large and unpredictable subject motion, sensorimotor brain activity was delineated clearly, and the correlation of the envelope of neuronal oscillations between the two subjects was demonstrated. Our results show that unlike existing modalities, OPM-MEG combines high-fidelity data acquisition and a naturalistic setting and thus presents significant potential to investigate neural correlates of social interaction.


Asunto(s)
Magnetoencefalografía , Dispositivos Electrónicos Vestibles , Humanos , Magnetoencefalografía/métodos , Neuroimagen Funcional , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología
4.
Blood ; 135(20): 1759-1771, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32187361

RESUMEN

Based on the profile of genetic alterations occurring in tumor samples from selected diffuse large B-cell lymphoma (DLBCL) patients, 2 recent whole-exome sequencing studies proposed partially overlapping classification systems. Using clustering techniques applied to targeted sequencing data derived from a large unselected population-based patient cohort with full clinical follow-up (n = 928), we investigated whether molecular subtypes can be robustly identified using methods potentially applicable in routine clinical practice. DNA extracted from DLBCL tumors diagnosed in patients residing in a catchment population of ∼4 million (14 centers) were sequenced with a targeted 293-gene hematological-malignancy panel. Bernoulli mixture-model clustering was applied and the resulting subtypes analyzed in relation to their clinical characteristics and outcomes. Five molecular subtypes were resolved, termed MYD88, BCL2, SOCS1/SGK1, TET2/SGK1, and NOTCH2, along with an unclassified group. The subtypes characterized by genetic alterations of BCL2, NOTCH2, and MYD88 recapitulated recent studies showing good, intermediate, and poor prognosis, respectively. The SOCS1/SGK1 subtype showed biological overlap with primary mediastinal B-cell lymphoma and conferred excellent prognosis. Although not identified as a distinct cluster, NOTCH1 mutation was associated with poor prognosis. The impact of TP53 mutation varied with genomic subtypes, conferring no effect in the NOTCH2 subtype and poor prognosis in the MYD88 subtype. Our findings confirm the existence of molecular subtypes of DLBCL, providing evidence that genomic tests have prognostic significance in non-selected DLBCL patients. The identification of both good and poor risk subtypes in patients treated with R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone) clearly show the clinical value of the approach, confirming the need for a consensus classification.


Asunto(s)
Análisis Mutacional de ADN/métodos , Secuenciación del Exoma , Linfoma de Células B Grandes Difuso/diagnóstico , Linfoma de Células B Grandes Difuso/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Investigación Biomédica/organización & administración , Niño , Preescolar , Estudios de Cohortes , Redes Comunitarias , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Neoplasias Hematológicas/clasificación , Neoplasias Hematológicas/diagnóstico , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patología , Humanos , Lactante , Linfoma de Células B Grandes Difuso/clasificación , Linfoma de Células B Grandes Difuso/patología , Masculino , Oncología Médica/organización & administración , Persona de Mediana Edad , Técnicas de Diagnóstico Molecular/métodos , Estadificación de Neoplasias , Pronóstico , Transcriptoma , Reino Unido , Secuenciación del Exoma/métodos , Adulto Joven
5.
Br J Haematol ; 192(3): 599-604, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33249557

RESUMEN

Cell-of-origin subclassification of diffuse large B cell lymphoma (DLBCL) into activated B cell-like (ABC), germinal centre B cell-like (GCB) and unclassified (UNC) or type III by gene expression profiling is recommended in the latest update of the World Health Organization's classification of lymphoid neoplasms. There is, however, no accepted gold standard method or dataset for this classification. Here, we compare classification results using gene expression data for 68 formalin-fixed paraffin-embedded DLBCL samples measured on four different gene expression platforms (Illumina wG-DASLTM arrays, Affymetrix PrimeView arrays, Illumina TrueSeq RNA sequencing and the HTG EdgeSeq DLBCL Cell of Origin Assay EU using an established platform agnostic classification algorithm (DAC) and the classifier native to the HTG platform, which is CE marked for in vitro diagnostic use (CE-IVD). Classification methods and platforms show a high level of concordance, with agreement in at least 80% of cases and rising to much higher levels for classifications of high confidence. Our results demonstrate that cell-of-origin classification by gene expression profiling on different platforms is robust, and that the use of the confidence value alongside the classification result is important in clinical applications.


Asunto(s)
Perfilación de la Expresión Génica , Linfoma de Células B Grandes Difuso/genética , Regulación Neoplásica de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Linfoma de Células B Grandes Difuso/clasificación , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN/genética , Transcriptoma
6.
Blood ; 133(12): 1325-1334, 2019 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-30606702

RESUMEN

The diagnosis of chronic myelomonocytic leukemia (CMML) remains centered on morphology, meaning that the distinction from a reactive monocytosis is challenging. Mutational analysis and immunophenotyping have been proposed as potential tools for diagnosis; however, they have not been formally assessed in combination. We aimed to investigate the clinical utility of these technologies by performing targeted sequencing, in parallel with current gold standard techniques, on consecutive samples referred for investigation of monocytosis over a 2-year period (N = 283). Results were correlated with the morphological diagnosis and objective outcome measures, including overall survival (OS) and longitudinal blood counts. Somatic mutations were detected in 79% of patients, being invariably identified in those with a confirmed diagnosis (99%) but also in 57% of patients with nondiagnostic bone marrow features. The OS in nondiagnostic mutated patients was indistinguishable from those with CMML (P = .118) and significantly worse than in unmutated patients (P = .0002). On multivariate analysis, age, ASXL1, CBL, DNMT3A, NRAS, and RUNX1 mutations retained significance. Furthermore, the presence of a mutation was associated with a progressive decrease in hemoglobin/platelet levels and increasing monocyte counts compared with mutation-negative patients. Of note, the immunophenotypic features of nondiagnostic mutated patients were comparable to CMML patients, and the presence of aberrant CD56 was highly specific for detecting a mutation. Overall, somatic mutations are detected at high frequency in patients referred with a monocytosis, irrespective of diagnosis. In those without a World Health Organization-defined diagnosis, the mutation spectrum, immunophenotypic features, and OS are indistinguishable from CMML patients, and these patients should be managed as such.


Asunto(s)
Biomarcadores de Tumor/genética , Análisis Mutacional de ADN/métodos , Citometría de Flujo/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Leucemia Mielomonocítica Crónica/diagnóstico , Monocitos/patología , Mutación , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Estudios de Seguimiento , Humanos , Inmunofenotipificación , Leucemia Mielomonocítica Crónica/genética , Masculino , Persona de Mediana Edad , Monocitos/metabolismo , Pronóstico , Tasa de Supervivencia , Organización Mundial de la Salud , Adulto Joven
7.
Neuroimage ; 189: 329-340, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30639839

RESUMEN

The sensation of touch in the glabrous skin of the human hand is conveyed by thousands of fast-conducting mechanoreceptive afferents, which can be categorised into four distinct types. The spiking properties of these afferents in the periphery in response to varied tactile stimuli are well-characterised, but relatively little is known about the spatiotemporal properties of the neural representations of these different receptor types in the human cortex. Here, we use the novel methodological combination of single-unit intraneural microstimulation (INMS) with magnetoencephalography (MEG) to localise cortical representations of individual touch afferents in humans, by measuring the extracranial magnetic fields from neural currents. We found that by assessing the modulation of the beta (13-30 Hz) rhythm during single-unit INMS, significant changes in oscillatory amplitude occur in the contralateral primary somatosensory cortex within and across a group of fast adapting type I mechanoreceptive afferents, which corresponded well to the induced response from matched vibrotactile stimulation. Combining the spatiotemporal specificity of MEG with the selective single-unit stimulation of INMS enables the interrogation of the central representations of different aspects of tactile afferent signalling within the human cortices. The fundamental finding that single-unit INMS ERD responses are robust and consistent with natural somatosensory stimuli will permit us to more dynamically probe the central nervous system responses in humans, to address questions about the processing of touch from the different classes of mechanoreceptive afferents and the effects of varying the stimulus frequency and patterning.


Asunto(s)
Vías Aferentes/fisiología , Ritmo beta/fisiología , Magnetoencefalografía/métodos , Mecanorreceptores/fisiología , Corteza Somatosensorial/fisiología , Percepción del Tacto/fisiología , Adulto , Anciano , Estimulación Eléctrica , Femenino , Mano/fisiología , Humanos , Masculino , Persona de Mediana Edad , Vibración , Adulto Joven
8.
Neuroimage ; 149: 404-414, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28131890

RESUMEN

Advances in the field of quantum sensing mean that magnetic field sensors, operating at room temperature, are now able to achieve sensitivity similar to that of cryogenically cooled devices (SQUIDs). This means that room temperature magnetoencephalography (MEG), with a greatly increased flexibility of sensor placement can now be considered. Further, these new sensors can be placed directly on the scalp surface giving, theoretically, a large increase in the magnitude of the measured signal. Here, we present recordings made using a single optically-pumped magnetometer (OPM) in combination with a 3D-printed head-cast designed to accurately locate and orient the sensor relative to brain anatomy. Since our OPM is configured as a magnetometer it is highly sensitive to environmental interference. However, we show that this problem can be ameliorated via the use of simultaneous reference sensor recordings. Using median nerve stimulation, we show that the OPM can detect both evoked (phase-locked) and induced (non-phase-locked oscillatory) changes when placed over sensory cortex, with signals ~4 times larger than equivalent SQUID measurements. Using source modelling, we show that our system allows localisation of the evoked response to somatosensory cortex. Further, source-space modelling shows that, with 13 sequential OPM measurements, source-space signal-to-noise ratio (SNR) is comparable to that from a 271-channel SQUID system. Our results highlight the opportunity presented by OPMs to generate uncooled, potentially low-cost, high SNR MEG systems.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/fisiología , Magnetoencefalografía/instrumentación , Magnetoencefalografía/métodos , Potenciales Evocados Somatosensoriales/fisiología , Humanos , Relación Señal-Ruido , Temperatura
9.
J Physiol ; 594(4): 1051-67, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26614577

RESUMEN

KEY POINTS: Lying supine in a strong magnetic field, such as in magnetic resonance imaging scanners, can induce a perception of whole-body rotation. The leading hypothesis to explain this invokes a Lorentz force mechanism acting on vestibular endolymph that acts to stimulate semicircular canals. The hypothesis predicts that the perception of whole-body rotation will depend on head orientation in the field. Results showed that the direction and magnitude of apparent whole-body rotation while stationary in a 7 T magnetic field is influenced by head orientation. The data are compatible with the Lorentz force hypothesis of magnetic vestibular stimulation and furthermore demonstrate the operation of a spatial transformation process from head-referenced vestibular signals to Earth-referenced body motion. ABSTRACT: High strength static magnetic fields are known to induce vertigo, believed to be via stimulation of the vestibular system. The leading hypothesis (Lorentz forces) predicts that the induced vertigo should depend on the orientation of the magnetic field relative to the head. In this study we examined the effect of static head pitch (-80 to +40 deg; 12 participants) and roll (-40 to +40 deg; 11 participants) on qualitative and quantitative aspects of vertigo experienced in the dark by healthy humans when exposed to the static uniform magnetic field inside a 7 T MRI scanner. Three participants were additionally examined at 180 deg pitch and roll orientations. The effect of roll orientation on horizontal and vertical nystagmus was also measured and was found to affect only the vertical component. Vertigo was most discomforting when head pitch was around 60 deg extension and was mildest when it was around 20 deg flexion. Quantitative analysis of vertigo focused on the induced perception of horizontal-plane rotation reported online with the aid of hand-held switches. Head orientation had effects on both the magnitude and the direction of this perceived rotation. The data suggest sinusoidal relationships between head orientation and perception with spatial periods of 180 deg for pitch and 360 deg for roll, which we explain is consistent with the Lorentz force hypothesis. The effects of head pitch on vertigo and previously reported nystagmus are consistent with both effects being driven by a common vestibular signal. To explain all the observed effects, this common signal requires contributions from multiple semicircular canals.


Asunto(s)
Campos Magnéticos/efectos adversos , Postura , Rotación , Vértigo/fisiopatología , Vestíbulo del Laberinto/fisiología , Adolescente , Adulto , Femenino , Cabeza/fisiología , Humanos , Masculino , Persona de Mediana Edad , Canales Semicirculares/fisiología , Vértigo/etiología
10.
Neuroimage ; 84: 307-19, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23994127

RESUMEN

Large artefacts compromise EEG data quality during simultaneous fMRI. These artefact voltages pose heavy demands on the bandwidth and dynamic range of EEG amplifiers and mean that even small fractional variations in the artefact voltages give rise to significant residual artefacts after average artefact subtraction. Any intrinsic reduction in the magnitude of the artefacts would be highly advantageous, allowing data with a higher bandwidth to be acquired without amplifier saturation, as well as reducing the residual artefacts that can easily swamp signals from brain activity measured using current methods. Since these problems currently limit the utility of simultaneous EEG-fMRI, new approaches for reducing the magnitude and variability of the artefacts are required. One such approach is the use of an EEG cap that incorporates electrodes embedded in a reference layer that has similar conductivity to tissue and is electrically isolated from the scalp. With this arrangement, the artefact voltages produced on the reference layer leads by time-varying field gradients, cardiac pulsation and subject movement are similar to those induced in the scalp leads, but neuronal signals are not detected in the reference layer. Taking the difference of the voltages in the reference and scalp channels will therefore reduce the artefacts, without affecting sensitivity to neuronal signals. Here, we test this approach by using a simple experimental realisation of the reference layer to investigate the artefacts induced on the leads attached to the reference layer and scalp and to evaluate the degree of artefact attenuation that can be achieved via reference layer artefact subtraction (RLAS). Through a series of experiments on phantoms and human subjects, we show that RLAS significantly reduces the gradient (GA), pulse (PA) and motion (MA) artefacts, while allowing accurate recording of neuronal signals. The results indicate that RLAS generally outperforms AAS when motion is present in the removal of the GA and PA, while the combination of AAS and RLAS always produces higher artefact attenuation than AAS. Additionally, we demonstrate that RLAS greatly attenuates the unpredictable and highly variable MAs that are very hard to remove using post-processing methods.


Asunto(s)
Algoritmos , Artefactos , Mapeo Encefálico/métodos , Electroencefalografía/métodos , Imagen por Resonancia Magnética/métodos , Imagen Multimodal/métodos , Técnica de Sustracción , Mapeo Encefálico/normas , Electroencefalografía/instrumentación , Electroencefalografía/normas , Humanos , Aumento de la Imagen/métodos , Aumento de la Imagen/normas , Interpretación de Imagen Asistida por Computador/métodos , Interpretación de Imagen Asistida por Computador/normas , Imagen por Resonancia Magnética/instrumentación , Imagen por Resonancia Magnética/normas , Movimiento (Física) , Imagen Multimodal/instrumentación , Imagen Multimodal/normas , Fantasmas de Imagen , Valores de Referencia , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
11.
Lancet Haematol ; 11(1): e51-e61, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38135373

RESUMEN

BACKGROUND: Somatic mutations are frequently reported in individuals with cytopenia but without a confirmed haematological diagnosis (clonal cytopenia of undetermined significance; CCUS). These patients have an increased risk of progression to a myeloid malignancy and worse overall survival than those with no such mutations. To date, studies have been limited by retrospective analysis or small patient numbers. We aimed to establish the natural history of CCUS by prospectively investigating outcome in a large, well defined patient cohort. METHODS: This prospective cohort study was conducted at the Haematological Malignancy Diagnostic Service, a diagnostic laboratory in Leeds, UK. Patients aged at least 18 years who were referred for investigation of cytopenia were eligible for inclusion; those with a history of myeloid malignancy were not eligible. Targeted sequencing was conducted alongside routine clinical testing. Baseline mutation analysis was then correlated with the main study outcomes: longitudinal blood counts, disease progression to a myeloid malignancy, and overall survival with a median follow-up of 4·54 years (IQR 4·03-5·04). Data were collected manually from hospital records or extracted from laboratory or clinical outcome databases. FINDINGS: Bone marrow samples from 2348 patients were received at the Haematological Malignancy Diagnostic Service between July 1, 2014, and July 31, 2016. Of these, 2083 patients (median age 72 years [IQR 63-80, range 18-99]; 854 [41·0%] female and 1229 [59·0%] male) met the inclusion criteria and had samples of sufficient quality for further analysis. 598 (28·7%) patients received a diagnosis on the basis of their biopsy sample, whereas 1485 (71·3%) samples were classified as non-diagnostic; of these, CCUS was confirmed in 400 (26·9%) patients (256 [64·0%] male and 144 [36·0%] female). TET2, SRSF2, and DNMT3A were the most frequently mutated genes in patients with CCUS, with 320 (80%) of 400 patients harbouring a mutation in at least one of these genes. Age (p<0·0001), sex (p=0·0027), and mutations in ASXL1 (p=0·0009), BCOR (p=0·0056), and TP53 (p=0·0055) correlated with a worse overall survival; however, the number of mutations was the strongest predictor for progression to a myeloid malignancy (two mutations, p=0·0024; three or more mutations, p=0·0004). Extended sequencing of samples from a subgroup of patients with sequential samples and no mutations in the initial myeloid gene panel showed recurrent mutations in both DDX41 and UBA1, suggesting that these genes should be included in clinical test panels. INTERPRETATION: Mutation analysis is advised in patients who have undergone bone marrow examination and have an otherwise-unexplained cytopenia. High-risk genetic mutations and increased numbers of mutations are predictive of both survival and progression within 5 years of presentation, warranting clinical surveillance and, when necessary, intervention. FUNDING: MDS Foundation.


Asunto(s)
Citopenia , Neoplasias Hematológicas , Síndromes Mielodisplásicos , Trastornos Mieloproliferativos , Humanos , Masculino , Femenino , Adolescente , Adulto , Anciano , Síndromes Mielodisplásicos/patología , Estudios Retrospectivos , Estudios Prospectivos , Mutación , Neoplasias Hematológicas/genética
12.
Blood Adv ; 6(21): 5716-5731, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-35363872

RESUMEN

Follicular lymphoma (FL) is morphologically and clinically diverse, with mutations in epigenetic regulators alongside t(14;18) identified as disease-initiating events. Identification of additional mutational entities confirms this cancer's heterogeneity, but whether mutational data can be resolved into mechanistically distinct subsets remains an open question. Targeted sequencing was applied to an unselected population-based FL cohort (n = 548) with full clinical follow-up (n = 538), which included 96 diffuse large B-cell lymphoma (DLBCL) transformations. We investigated whether molecular subclusters of FL can be identified and whether mutational data provide predictive information relating to transformation. DNA extracted from FL samples was sequenced with a 293-gene panel representing genes frequently mutated in DLBCL and FL. Three clusters were resolved using mutational data alone, independent of translocation status: FL_aSHM, with high burden of aberrant somatic hypermutation (aSHM) targets; FL_STAT6, with high STAT6 & CREBBP mutation and low aSHM; and FL_Com, with the absence of features of other subtypes and enriched KMT2D mutation. Analysis of mutation signatures demonstrated differential enrichment of predicted mutation signatures between subgroups and a dominant preference in the FL_aSHM subgroup for G(C>T)T and G(C>T)C transitions consistent with previously defined aSHM-like patterns. Of transformed cases with paired samples, 17 of 26 had evidence of branching evolution. Poorer overall survival (OS) in the aSHM group (P = .04) was associated with older age; however, overall tumor genetics provided limited information to predict individual patient risk. Our approach identifies 3 molecular subclusters of FL linked to differences in underlying mechanistic pathways. These clusters, which may be further resolved by the inclusion of translocation status and wider mutation profiles, have implications for understanding pathogenesis as well as improving treatment strategies in the future.


Asunto(s)
Neoplasias Hematológicas , Linfoma Folicular , Linfoma de Células B Grandes Difuso , Humanos , Linfoma Folicular/diagnóstico , Linfoma Folicular/genética , Linfoma de Células B Grandes Difuso/genética , Mutación , Translocación Genética , Neoplasias Hematológicas/genética , Reino Unido
13.
Sci Rep ; 12(1): 13561, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35945239

RESUMEN

Magnetically shielded rooms (MSRs) use multiple layers of materials such as MuMetal to screen external magnetic fields that would otherwise interfere with high precision magnetic field measurements such as magnetoencephalography (MEG). Optically pumped magnetometers (OPMs) have enabled the development of wearable MEG systems which have the potential to provide a motion tolerant functional brain imaging system with high spatiotemporal resolution. Despite significant promise, OPMs impose stringent magnetic shielding requirements, operating around a zero magnetic field resonance within a dynamic range of ± 5 nT. MSRs developed for OPM-MEG must therefore effectively shield external sources and provide a low remnant magnetic field inside the enclosure. Existing MSRs optimised for OPM-MEG are expensive, heavy, and difficult to site. Electromagnetic coils are used to further cancel the remnant field inside the MSR enabling participant movements during OPM-MEG, but present coil systems are challenging to engineer and occupy space in the MSR limiting participant movements and negatively impacting patient experience. Here we present a lightweight MSR design (30% reduction in weight and 40-60% reduction in external dimensions compared to a standard OPM-optimised MSR) which takes significant steps towards addressing these barriers. We also designed a 'window coil' active shielding system, featuring a series of simple rectangular coils placed directly onto the walls of the MSR. By mapping the remnant magnetic field inside the MSR, and the magnetic field produced by the coils, we can identify optimal coil currents and cancel the remnant magnetic field over the central cubic metre to just |B|= 670 ± 160 pT. These advances reduce the cost, installation time and siting restrictions of MSRs which will be essential for the widespread deployment of OPM-MEG.


Asunto(s)
Neuroimagen Funcional , Magnetoencefalografía , Encéfalo , Humanos , Campos Magnéticos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Magnetoencefalografía/métodos
14.
Magn Reson Med ; 63(1): 51-8, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19859955

RESUMEN

The radiofrequency (RF) transmit field is severely inhomogeneous at ultrahigh field due to both RF penetration and RF coil design issues. This particularly impairs image quality for sequences that use inversion pulses such as magnetization prepared rapid acquisition gradient echo and limits the use of quantitative arterial spin labeling sequences such as flow-attenuated inversion recovery. Here we have used a search algorithm to produce inversion pulses tailored to take into account the heterogeneity of the RF transmit field at 7 T. This created a slice selective inversion pulse that worked well (good slice profile and uniform inversion) over the range of RF amplitudes typically obtained in the head at 7 T while still maintaining an experimentally achievable pulse length and pulse amplitude in the brain at 7 T. The pulses used were based on the frequency offset correction inversion technique, as well as time dilation of functions, but the RF amplitude, frequency sweep, and gradient functions were all generated using a genetic algorithm with an evaluation function that took into account both the desired inversion profile and the transmit field inhomogeneity.


Asunto(s)
Algoritmos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Procesamiento de Señales Asistido por Computador , Campos Electromagnéticos , Imagen por Resonancia Magnética/instrumentación , Fantasmas de Imagen , Ondas de Radio , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
16.
J Vestib Res ; 30(6): 353-361, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33285663

RESUMEN

The sensation of phantom motion or exhibition of bodily sway is often reported in the proximity of an MR scanner. It is proposed that the magnetic field stimulates the vestibular system. There are a number of possible mechanisms responsible, and the relative contributions of susceptibility on the otolithic receptors and the Lorentz force on the cupulae have not yet been explored. This exploratory study aims to investigate the impact of being in the proximity of a 7.0 T MR scanner.The modified clinical test of sensory interaction on balance (mCTSIB) was used to qualitatively ascertain whether or not healthy control subjects who passed the mCTSIB in normal conditions 1) experienced subjective sensations of dizziness, vertigo or of leaning or shifting in gravity when in the magnetic field and 2) exhibited visibly increased bodily sway whilst in the magnetic field compared to outside the magnetic field. Condition IV of the mCTSIB was video recorded outside and inside the magnetic field, providing a semi-quantitative measure of sway.For condition IV of the mCTSIB (visual and proprioceptive cues compromised), all seven locations/orientations around the scanner yielded significantly more sway than at baseline (p < 0.01 FDR). A Student's t-test comparing the RMS velocity of a motion marker on the upper arm during mCTSIB condition IV showed a significant increase in the amount of motion exhibited in the field (T = 2.59; d.f. = 9; p = 0.029) compared to outside the field.This initial study using qualitative measures of sway demonstrates that there is evidence for MR-naïve individuals exhibiting greater sway while performing the mCTSIB in the magnetic field compared to outside the field. Directional polarity of sway was not significant. Future studies of vestibular stimulation by magnetic fields would benefit from the development of a sensitive, objective measure of balance function, which can be performed inside a magnetic field.


Asunto(s)
Fenómenos Magnéticos , Imagen por Resonancia Magnética/instrumentación , Equilibrio Postural/fisiología , Investigación Cualitativa , Pruebas de Función Vestibular/normas , Grabación en Video/normas , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pruebas de Función Vestibular/métodos , Grabación en Video/métodos
17.
PLoS One ; 15(11): e0241441, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33175860

RESUMEN

OBJECTIVE: The gastrointestinal environment in which drug products need to disintegrate before the drug can dissolve and be absorbed has not been studied in detail due to limitations, especially invasiveness of existing techniques. Minimal in vivo data is available on undisturbed gastrointestinal motility to improve relevance of predictive dissolution models and in silico tools such as physiologically-based pharmacokinetic models. Recent advances in magnetic resonance imaging methods could provide novel data and insights that can be used as a reference to validate and, if necessary, optimize these models. The conventional method for measuring gastrointestinal motility is via a manometric technique involving intubation. Nevertheless, it is feasible to measure gastrointestinal motility with magnetic resonance imaging. The aim of this study was is to develop and validate a magnetic resonance imaging method using the most recent semi-automated analysis method against concomitant perfused manometry method. MATERIAL AND METHODS: Eighteen healthy fasted participants were recruited for this study. The participants were intubated with a water-perfused manometry catheter. Subsequently, stomach motility was assessed by cine-MRI acquired at intervals, of 3.5min sets, at coronal oblique planes through the abdomen and by simultaneous water perfused manometry, before and after administration of a standard bioavailability / bioequivalence 8 ounces (~240mL) drink of water. The magnetic resonance imaging motility images were analysed using Spatio-Temporal Motility analysis STMM techniques. The area under the curve of the gastric motility contractions was calculated for each set and compared between techniques. The study visit was then repeated one week later. RESULTS: Data from 15 participants was analysed. There was a good correlation between the MRI antral motility plots area under the curve and corresponding perfused manometry motility area under the curve (r = 0.860) during both antral contractions and quiescence. CONCLUSION: Non-invasive dynamic magnetic resonance imaging of gastric antral motility coupled with recently developed, semi-automated magnetic resonance imaging data processing techniques correlated well with simultaneous, 'gold standard' water perfused manometry. This will be particularly helpful for research purposes related to oral absorption where the absorption of a drug is highly depending on the underlying gastrointestinal processes such as gastric emptying, gastrointestinal motility and availability of residual fluid volumes. CLINICAL TRIAL: This trial was registered at ClinicalTrials.gov as NCT03191045.


Asunto(s)
Ayuno/fisiología , Motilidad Gastrointestinal/fisiología , Voluntarios Sanos , Imagen por Resonancia Magnética , Manometría , Antro Pilórico/diagnóstico por imagen , Antro Pilórico/fisiología , Agua/farmacología , Adulto , Área Bajo la Curva , Disponibilidad Biológica , Femenino , Motilidad Gastrointestinal/efectos de los fármacos , Humanos , Masculino , Persona de Mediana Edad , Contracción Muscular/fisiología , Antro Pilórico/efectos de los fármacos , Equivalencia Terapéutica , Factores de Tiempo , Adulto Joven
18.
Pan Afr Med J ; 33: 256, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31692849

RESUMEN

A rare case series of traumatic right diaphragmatic rupture with hepatothorax in Ghana is reported. The first case involved a middle-aged man who sustained a penetrating chest injury following an unprovoked attack by a wild bull. The second case was a young woman who sustained a blunt chest injury after being knocked down by a moving vehicle whiles crossing the road. Both presented with ruptured right diaphgramatic rupture and had to undergo repair through thoracotomy after stabilization and the two had been well one year after surgery without any complications or sequelae.


Asunto(s)
Diafragma/lesiones , Hígado/patología , Heridas no Penetrantes/complicaciones , Heridas Penetrantes/complicaciones , Adulto , Diafragma/cirugía , Femenino , Ghana , Hernia Diafragmática Traumática/etiología , Hernia Diafragmática Traumática/cirugía , Humanos , Masculino , Rotura , Traumatismos Torácicos/complicaciones , Traumatismos Torácicos/cirugía , Toracotomía/métodos , Heridas no Penetrantes/cirugía , Heridas Penetrantes/cirugía
19.
Pan Afr Med J ; 33: 287, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31692942

RESUMEN

Catamenial pneumothorax is a rare condition that is often misdiagnosed. It is defined as spontaneous pneumothorax occurring within 72 hours before or after onset of menstruation. Etiology is unknown but could be linked to endometriosis. Pleural ablation via thoracoscopy and hormonal therapy are mainstay treatment options to avoid recurrence. We present a case of a young adult female who experienced gradual painless abdominal distention that resolved spontaneously after each menses twelve years post menarche. She was first seen at a peripheral facility where laparotomy undertaken was negative for suspected ectopic pregnancy. However, a bleeding omental mass was noticed and a biopsy taken. Histopathology reported it as an endometriotic tissue. The patient subsequently had recurrent cyclical chest pains and breathlessness leading to the diagnosis of catamenial pneumothorax. She had chemical pleurodesis done with sterile talc after chest tube drainage and has been well over two years now.


Asunto(s)
Endometriosis/diagnóstico , Pleurodesia/métodos , Neumotórax/diagnóstico , Adulto , Dolor en el Pecho/etiología , Drenaje/métodos , Femenino , Ghana , Humanos , Menstruación/fisiología , Neumotórax/terapia
20.
Sci Total Environ ; 669: 579-589, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-30889447

RESUMEN

Predictions have shown that our demand for oil and gas will continue to grow in the next decade, and future supply will become more reliant on tertiary recovery and from nonconventional resources. However, current reservoir characterization methodologies, such as well logs, cross-well electromagnetic imaging and seismic methods, have their individual limitations on detection range and resolution. Here we propose a pioneering way to use carbon quantum dots (CQDs) as nanoparticle tracers, which can be transported through a reservoir functioning as conventional tracers, while acting as sensors to obtain useful information. These hydrothermally produced CQDs from Xylose possess excellent stability in high ionic strength solutions, durable absorbance and fluorescence ability due to multi high-polarity functional group on their surfaces. Consistency between our on-line ultraviolet-visible (UV-Vis) spectroscopy and off-line Confocal laser scanning microscopy (CLSM) measurements confirms that CQDs have the tracer-like migration capability in glass beads-packed columns and sandstone cores, regardless of particle concentration and ionic strength. However, their migration ability is undermined in the column packed with crushed calcite grains with positive charge. We also demonstrate that quantitative oil saturation detection in unknown sandstone core samples can be achieved by such CQDs based on its breakthrough properties influenced by the presence of oil phase.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA